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Inherent structures in models for fragile and strong glass
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An analysis of the dynamics is performed of exactly solvable models for fragile and strong glasses, exploit-
ing the partitioning of the free-energy landscape in inherent structures. The results are compared with the exact
solution of the dynamics, by employing the formulation of an effective temperature used in literature. Also, a
statistical mechanics formulation is introduced, based upon general statistical considerations, which performs
better. Though the considered models are conceptually simple, there is no limit in which the dynamics may be
exactly described by a symbolic dynamics of the system moving through consistently weighted inherent
structures.
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I. INTRODUCTION

The characteristics of a glassy system@1,2# arise from the
complex topography of the multidimensional function rep
senting the collective potential energy that gives rise t
nontrivial partition function and thermodynamic potential.
this picture, at low enough temperature where vibrations
minimal, the spatial atomic patterns in crystals and in am
phous systems share the common basic attribute that
represent minima in the potential-energy function describ
the interactions. The presence of distinct processes actin
two different time scales means that the deep and wide l
minima at and below the glass transition temperatureTg are
geometrically organized to create a two length-sc
potential-energy pattern.Tg depends on the cooling proce
dure and it is usually determined as the temperature at w
the viscosity of the glass former reaches the value of 1013.

In the present paper, we investigate, using the inhe
structure approach, exactly solvable model glass that sh
all the basic features of real glasses@3#. We study two mod-
els: one for the fragile glass and one for the strong one.
models are built by processes evolving on two differe
well-separated time scales, representing, respectively, tha
and b processes taking place in real glassy materials.
slow a processes represent the escape from one deep m
mum within a large scale valley to another valley. The fasb
processes, instead, are related to elementary relaxation
tween neighboring minima inside the same valley. We c
sider here all kinds ofb processes as equivalent, since t
characteristic time scales on which they are evolving are
any case much shorter than the time scale of thea processes
~i.e., the observation time!.

In the general case, decreasing the temperature, the
energy local minima may, in principle, be split into small
local minima. But if we may assume that they maintain th
identity in spite of this splitting, we can set a one-to-o
correspondence between local minima and inherent st
tures@4–7#, i.e., between the minima of the free energy a
the ones of the potential energy. Actually, such a splitt
does not even occur in the two dynamical models prese
here, making the correspondence exact at all temperat
The same happens, for instance, in mean-field spin-g
models, such asp-spinlike models@8–11#.

In this paper, we will see to which extent such a schem
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widely used in numerical simulations@4–6,8–10,12,13#, ap-
plies to our analytically solvable models. We will compare
with the exact dynamic solution, achieved without any p
titioning of the configuration space.

In Sec. II, we introduce the two kinetic models and w
give the description of their statics and of their Monte Ca
dynamics. In Sec. III, we develop the inherent structure
proach for the dynamics of such models and we define
different inherent structure-effective temperatures mapp
the dynamics into a thermodynamic frame~in Sec. III D!;
one definition follows the literature on numerical simulatio
@4–10,12,13#, the other exploits the analytic solvability o
the models.

II. THE MODELS AND THEIR PROPERTIES

A. Hamiltonian and constraint on the configuration space

We present two dynamical models, having the same s
ics, but different dynamics leading to the behavior of a fra
ile glass in one case and to the behavior of a strong glas
the other one. The model describing a system relaxing lik
fragile glass was introduced in@15# and widely studied in
@3#.

Both models are described by the following local Ham
tonian:

H@$xi%,$Si%#5
1

2
K(

i 51

N

xi
22H(

i 51

N

xi2J(
i 51

N

xiSi2L(
i 51

N

Si ,

~2.1!

where N is the size of the system and$xi% and $Si% are
continuous variables, the last satisfying a spherical c
straint:( iSi

25N. We call them, respectively, harmonic osc
lators and spherical spins.K is the Hooke elastic constant,H
is an external field acting on the harmonic oscillators,J is the
coupling constant between$xi% and $Si% on the same sitei,
and L is the external field acting on the spherical spins.
separation of time scales is introduced by hand: the sp
represent the fast modes and the harmonic oscillators
slow ones. We assume that the$Si% relax to equilibrium on a
time scale much shorter than the one of the harmonic os
lators. From the point of view of the motion of the$xi%, the
©2001 The American Physical Society25-1
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spins are just a noise. To describe the long-time regime of
$xi%, in @3#, we can average over this noise by performing
computation of the$Si% partition function, obtaining an ef
fective Hamiltonian depending only on the$xi%, that deter-
mines the dynamics of these variables@in the analysis with
inherent structures, we will not carry out this average but
will start from the ‘‘bare’’ Hamiltonian, Eq.~2.1!#. Using the
saddle-point approximation for largeN we find,

ZS~$xi%!5E S )
i 51

N

dSi D exp$2bH@$xi%,$Si%#%

3dS (
i 51

N

Si
22ND

. expF2bNS K

2
m22Hm12w1

T

2
ln

w1T/2

T D G ,
~2.2!

where we introduce the short hands

m1[
1

N (
i 51

N

xi , m2[
1

N (
i 51

N

xi
2 , ~2.3!

and

w[AJ2m212JLm11L21
T2

4
. ~2.4!

We define, then, the effective HamiltonianHeff($xi%)
[2T ln ZS($xi%), that is the free energy for a given config
ration of $xi%. We find

Heff~$xi%!5
K

2
m2N2Hm1N2wN1

TN

2
ln

w1T/2

T
.

~2.5!

This may also be written in terms of the internal ener
U($xi%) and of the entropySep($xi%) of the equilibrium pro-
cesses~i.e., the spins!,

Heff~$xi%!5U~$xi%!2TSep~$xi%!, ~2.6!

U~$xi%!5
K

2
m2N2Hm1N2wN1

TN

2
, ~2.7!

Sep~$xi%!5
N

2
2

N

2
ln

w1T/2

T
. ~2.8!

The functionU is actually the Hamiltonian averaged over t
spins andSep is the entropy of the spins.

In @3#, we studied the model characterized by a constra
on the phase space, introduced for the fragile glass cas
avoid the existence of the single-global minimum, a
06612
e
e

e

t
to

implementing a large degeneracy of the allowable low
states. The constraint is taken on the$xi%, thus concerning
the long time regime. It reads

m22m1
2>m0 , ~2.9!

wherem0 is a model parameter. It is a fixed, but arbitrar
strictly positive constant. This constraint applied to t
harmonic-oscillators dynamics is a way to reproduce the
havior of good glass formers. We imposed a Monte Ca
dynamics@16,17# satisfying this constraint and coupling th
otherwise noninteracting$xi% in a dynamic way. As we saw
in @3#, the system exhibits a Vogel-Fulcher-Tammann-He
~VFTH! relaxation@24#, characterizing a fragile glass.

To model a strong glass, instead, we will consider
same model Hamiltonian but without imposing any co
straint and making use of a different Monte Carlo dynami
We will show later~Appendix! that this dynamics displays
an Arrhenius relaxation near zero temperature. In this c
we have a strong glass, as it happens for similar models,
the oscillators model@17# and the spherical spins model@18#
where exactly the same dynamics is applied. The point of
present paper is that now there are both fast and slow
cesses.

To shorten the notation, we define the modified ‘‘spri
constant’’K̃ and ‘‘external field’’H̃,

K̃5K2
J2

w1T/2
, H̃5H1

JL

w1T/2
. ~2.10!

We stress thatK̃ and H̃ are actually functions of the$xi%
themselves~throughm1 and m2, occurring inw). We also
define the constant

D[HJ1KL. ~2.11!

Using the definitions~2.10! it is useful to note that

H̃J1K̃L5HJ1KL5D. ~2.12!

B. Statics at heat-bath temperatureT

The partition function of the whole system at equilibriu
is

Z~T!5E DxDSexp@2bH~$xi%,$Si%!#dS (
i

xi
22ND

5E dm1 dm2 expH 2bNFK

2
m22Hm12w

1
T

2
lnS w1T/2

T D2
T

2
@11 ln~m22m1

2!#G J .

~2.13!

The new object that appears in the exponent is the confi
rational entropy

I[
N

2
@11 ln~m22m1

2!#. ~2.14!
5-2
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It comes from the Jacobian exp$I% of the transformation of
variablesDx→dm1 dm2 @see Eq.~2.3!#. We may compute
the largeN limit of this partition function using, once again
the saddle-point approximation. The saddle-point equati
are found minimizing the expression between square bra
ets in Eq.~2.13! with respect tom1 andm2. This yields

m̄15
H̃~m̄1 ,m̄2!

K̃~m̄1 ,m̄2!
, ~2.15!

m̄25m̄1
21

T

K̃~m̄1 ,m̄2!
. ~2.16!

The form of the solutionsm̄1(T), m̄2(T) is quite compli-
cated because each of these equations is actually a fo
order equation, but they can be explicitly computed. In ter
of the equilibrium valuesm̄k , we find the following expres-
sion for the equilibrium free energy:

F@T,m̄1~T!,m̄2~T!#5NH K

2
m̄22Hm̄12w~m̄1 ,m̄2!

1
T

2
F ln

w~m̄1 ,m̄2!1T/2

T

2@11 ln~m̄22m̄1
2!#G J ~2.17!

5U~T,m̄1 ,m̄2!2TSep~T,m̄1 ,m̄2!

2TI~T,m̄1 ,m̄2!. ~2.18!

This is the statics both for the model with the constra
~2.9!, as long as the temperature exceeds the Kauzmann
perature, and for the one without it. Indeed, for the frag
glass case atT<T0, when the constraint is reached, th
saddle-point Eq.~2.16! becomesm̄22m̄1

25m0, no matter
what the temperature is of the thermal bath. In this pa
however, we will limit ourselves, for the fragile glass,
cases whereT is larger thanT0.

C. Dynamics

The dynamics we apply to the system is a parallel Mo
Carlo dynamics, first introduced in@16#. The thus obtained
dynamical model composed by the simple local Hamilton
~2.1! and such a dynamics has the benefit of being ana
cally solvable.

In a Monte Carlo step, a random updating of the variab
is performed (xi→xi85xi1r i /AN) where the$r i% have a
Gaussian distribution with zero mean and varianceD2. We
define x[H($xi8%)2H($xi%) as the energy difference be
tween the new and the old state. Ifx.0, the move is ac-
cepted with a probabilityW(bx)[ exp(2bx); else it is al-
ways accepted@W(bx)51#. The updating is made in
parallel. It is the parallel nature of the updating that allo
the collective behavior leading to exponentially diverge
06612
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time scales in models with no interactions between partic
such us ours. A sequential updating would not produce
glassy effect. This dynamics may induce glassy behavio
situations where ordinary Glauber dynamics@19# would not.
In our paper, the parallel dynamics mimics the presence
interactions between atoms in realistic glasses, where a l
internal cooperativeness is present. For different example
dynamics implying nontrivial collective behavior, the read
may look, for instance, at then spin facilitated kinetic Ising
model @20,21# or at the kinetic lattice-gas model@22,23#.

In a Monte Carlo step, the quantities( ixi5Nm1 and
( ixi

25Nm2 are updated. We denote their change byy1 and
y2, respectively. Their distribution function is, for given va
ues ofm1 andm2,

p~y1 ,y2um1 ,m2![E)
i

dr ie
2r i

2/(2D2)

A2pD2
dS (

i
xi82(

i
xi2y1D

3dS (
i

x8 i
22(

i
xi

22y2D
5

1

4pD2Am22m1
2

3expS 2
y1

2

2D2
2

~y22D222y1m1!2

8D2~m22m1
2!

D .

~2.19!

Neglecting the variations ofm1 and m2 of order D2/N, we
may express the energy difference as@3#

x5
K̃

2
y22H̃y1 . ~2.20!

In terms of x and y5y1, the distribution function may be
formally written as the product of two Gaussian distributio

p~y1 ,y2um1 ,m2!dy1 dy2

5dx p~xum1 ,m2!dy p~yux,m1 ,m2!

5
dx

A2pDx

expS 2
~x2 x̄!2

2Dx
D

3
dy

A2pDy

expS 2
@y2 ȳ~x!#2

2Dy
D , ~2.21!

where

x̄5D2K̃/2, Dx5D2K̃2~m22m1
2!1D2K̃2~m12H̃/K̃ !2,

~2.22!

ȳ~x!5
m12H̃/K̃

m22m1
21~m12H̃/K̃ !2

x2 x̄

K̃
,

Dy5
D2~m22m1

2!

m22m1
21~m12H̃/K̃ !2

. ~2.23!
5-3
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1. Dynamics of the fragile glass model

To represent a fragile glass, the dynamics that we appl
the system is a generalization of the analytic treatmen
Monte Carlo dynamics introduced in@16#. As noted in@15#,
also in this generalized case, the dynamical model wit
contrived dynamics may be analytically solved. As we s
in @3#, in the long-time domain, the dynamics looks qu
reasonable with regard to what one might expect of a
glassy system and the system exhibits a VFTH relaxat
We repeat here the main steps of the implementation of
dynamics~for a more extended presentation see@3#!.

We let D2, the variance of the random updating$r i%, de-
pend on the distance from the constraint, i.e., on the wh
$xi% configuration before the Monte Carlo update

D2~ t ![8@m2~ t !2m1
2~ t !#S B

m2~ t !2m1
2~ t !2m0

D g

,

~2.24!

where B, m0, and g are constants. In particular,g is an
exponent larger than zero that appears in the VFTH-like
laxation law of the model, whenT decreases towards som
critical temperatureT0 ~in @3#, we showed thatT0 is the
Kauzmann temperature of the model!

teq; expS Af

T2T0
D g

. ~2.25!

Af is a constant depending on the system’s parameters
other models@16–18,25,26# the varianceD2 was kept con-
stant. We will keep it constant in the dynamics of our stro
glass model as well~see next section!.

For what concerns the VFTH exponentg we saw in@3#
that it generates different dynamic regimes forg.1, g51,
and 0,g,1; the situationg51 remains model dependen
even in the long-time limit. We will stay in the following in
the regime forg.1.

The nearer the system goes to the constraint~i.e., the
smaller the value ofm22m1

22m0), the larger the variance
D2, implying almost always a refusal of the proposed upd
ing. In this way, in the neighborhood of the constraint, t
dynamics is very slow and goes on through very seldom
very large moves, which may be interpreted as activated
cesses. When the constraint is reached, the varianceD2 be-
comes infinite and the system dynamics gets stuck. The
tem does not evolve anymore towards equilibrium but it
blocked in one single ergodic component of the configurat
space. At large enough temperatures, the combina
m2(t)2m1

2(t)2m0 will remain strictly positive. The highes
temperature,T0, at which it can vanish fort→`, is identified
with the Kauzmann temperature@3#.

The dynamics may be expressed in terms of two com
nations ofm1 andm2. The first one, defined as

m1[
H̃

K̃
2m1 , ~2.26!
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represents the distance from the instantaneous equilibr
state. By instantaneous equilibrium state, we mean thaH̃

andK̃ depend on the values ofm1 andm2 at a given timet.
For t→`, at the true equilibrium, one hasm150.

The second dynamical variable is defined as the dista
from the constraint~2.9!

m2[m22m1
22m0 . ~2.27!

When m250, the constraint is reached. This will happen
the temperature is low enough (T<T0) and the time large
enough.T0 is the highest temperature at which the constra
is asymptotically (t→`) reached by the system. AboveT0,
ordinary equilibrium will be achieved without reaching th
constraint. The temperature is, then, too high for the sys
to notice that there is a constraint at all on the configurati
~we are speaking about the asymptotic time regime!, and this
implies @see Eq.~2.16!#

lim
t→`

m2~ t !5m̄2~T!5
T

K̃`~T!
2m0.0, ~2.28!

where

K̃`~T![ lim
t→`

K̃@m1~ t !,m2~ t !;T#5K̃@m̄1~T!,m̄2~T!#.

~2.29!

Below T0, the system goes to configurations that beco
arbitrarily close to the constraint, and then stay there a
trarily long. Note that, by definition ofT0, we may write

m05
T0

K̃`~T0!
. ~2.30!

Solving the equations of motions, for fixed parameters~aging
setup!, we find, to the leading orders of approximation f
large times, the following behavior form2 @3#

m2~ t !.
B

$ ln~ t/t0!1c ln@ ln~ t/t0!#%1/g
, ~2.31!

wherec51/2 since, in this paper, we only look at the regim
for T>T0. The constantt0 depends on the parameters of t
model and on the temperature; it is of order one. The solu
~2.31! is valid in the aging regime, wheret0!t!teq(T).
Indeed, whent;teq(T); exp@A/(T2T0)#

g the ‘‘distance’’
m2 becomes

m2.
B

F S Af

T2T0
D 1/gGg }T2T0 , ~2.32!

as it should be.
We also introduce another variable that will be useful la

on, namely, the difference betweenm2(t) and its asymptotic,
equilibrium, valuem̄2(T)
5-4
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dm2~ t ![m2~ t !2m̄2~T!.
B

$ log~ t/t0!1c ln@ log~ t/t0!#%1/g

2
T

K̃`~T!
1

T0

K̃`~T0!
, ~2.33!

where, using Eq.~2.30!, m̄2(T) comes from Eq.~2.28!, valid,
in the fragile case, whenT>T0. When t→`, dm250, by
definition.

The dynamical behavior ofm1 depends not only on the
temperature~above or belowT0) but also ong being greater,
equal to, or less than one. With respect to the relative we
of m1 andm2, we may identify different regimes@3#. What is
of our interest here is the regime ofT>T0 andg.1, where
m1(t)!m2(t) and a unique effective thermodynamic para
eter may be properly defined in various independent w
@3#.

2. Dynamics of the strong glass model

We now analyze the simple case without constraint on
configuration space and with a constantD2, the variance of
the randomly chosen updating$r i% of the slow variables$xi%.
This dynamical model may also be seen as the limit form0
→0 andg→1 of the preceding one. We also mention th
the case withJ5L50 is the model of harmonic oscillator
studied in@17,25#.

In the fragile glass case, we studied a different version
such a dynamics for two particular combinations of the va
ablesm1 andm2. Here, we will keep the same notation. Th
first variable is thus defined, starting from the saddle-po
Eq. ~2.15!, as the deviation from the instantaneous equil
rium state and is formally equivalent to Eq.~2.26!.

The second variable is defined as

m2[m22m1
2 . ~2.34!

WhenT50 from Eq.~2.16! we know thatm250. Indeed, at
T50, the system reaches its minimum

xi5
H1J

K
; i . ~2.35!

For simplicity, we limit ourselves to a choice of the intera
tion parameters such thatD5HJ1KL.0 and K̃.0, for
which this is the global minimum. In the Appendix we deriv
the equations of motion form1 andm2 and we solve them for
temperature equal to and slightly above zero and long tim
in the aging regime. In this time regime,m1 turns out to be
much smaller thanm2 : m1}m2

2. The solution form2 is, at the
leading order

m2~ t !.
D2

8

1

ln
2t

Ap

. ~2.36!

The differencedm2(t), betweenm2(t) and its asymptotic
value, is now
06612
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e
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dm2~ t ![m2~ t !2m̄2~T!.
D2

8

1

ln
2t

Ap

2
T

K̃`~T!
,

~2.37!

wherem̄2(T) comes from Eq.~2.16! and

K̃`~T!5 lim
t→`

K̃„m1~ t !,m2~ t !;T…5
KD

D1J2
1

T

2

J2K2

~D1J2!2

1
T2

8

J6K3~J223D !

D~D1J2!5
1O~T3!, ~2.38!

for t→`, dm2(t)→0.
At low temperature, the relaxation time for the slow pr

cesses follows an Arrhenius law

teq~T!} expS As

T D , ~2.39!

with

As[
D2K̃`~0!

8
. ~2.40!

D. Two temperature thermodynamics

Before going on, we recall here that we are able to int
duce effective parameters in order to rephrase the dynam
of the system out of equilibrium into a thermodynamic d
scription ~for a review, see@25#!.

In @3#, we got through different methods the followin
expression for the effective temperature in the regime foT
.T0 as a function of the interaction parameters of the mo
and of the time evolution of its observables

Te~ t !5K̃@m1~ t !,m2~ t !#@m01m2~ t !#. ~2.41!

Since we will use one of these methods in the next sectio
map the inherent structure~IS! dynamics into an effective
thermodynamic parameter, we shortly recall this particu
derivation of Eq.~2.41!. Knowing the solution of the dynam
ics at a given timet, a quasistatic approach may be followe
by computing the partition functionZe of all the macroscopi-
cally equivalent states at the timet. In order to generalize the
equilibrium thermodynamics, we assume an effective te
perature Te and an effective fieldHe , and substitute
the Boltzmann-Gibbs equilibrium measure b
exp@2Heff($xi%,T,He)/Te#, whereHeff is given in Eq.~2.6!
and the true external fieldH has been substituted by th
effective fieldHe . As we get the expression of the ‘‘thermo
dynamic’’ potentialFe[2Te logZe as a function of macro-
scopic variablesm1,2 and effective parameters, we may d
termineTe andHe minimizing Fe with respect tom1 andm2
and evaluating the resulting analytic expressions atm1,2
5m1,2(t).

The partition function of the macroscopically equivale
states is
5-5
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Ze~m1 ,m2 ;Te ,He![E Dx expF2
1

Te
Heff~$xi%,T,He!G

3dS Nm12(
i

xi D dS Nm22(
i

xi
2D .

~2.42!

From this we build the effective thermodynamic potential
a function of Te and He , besides ofT and H, where the
effective parameters depend on time through the tim
dependent values ofm1 andm2, solutions of the dynamics
Te andHe are actually a way of describing the evolution
time of the system out of equilibrium. The free-energyFe
52Te logZe is minimized with respect tom1 andm2. Then
their time-dependent values are inserted, yielding

Fe~ t !5U@m1~ t !,m2~ t !#2TSep@m1~ t !,m2~ t !#

2Te~ t !I@m1~ t !,m2~ t !#1@H2He~ t !#Nm1~ t !,

~2.43!

with

Te~ t !5K̃@m1~ t !,m2~ t !#@m01m2~ t !#,

He~ t !5H2K̃@m1~ t !,m2~ t !#m1~ t !. ~2.44!

U is the internal energy of the whole system@see Eq.~2.7!#,
Sep is the entropy of the fast or equilibrium processes~the
spherical spins! @see Eq.~2.8!# while I is the entropy of the
slow, ‘‘configurational,’’ processes~the harmonic oscillators!
@see Eq.~2.14!#. The last term ofFe replaces the2HNm1
occurring in U by 2HeNm1 . U, Sep, and I are ‘‘state’’
functions, in the sense that they depend on the state
scribed byT, Te , H, and, if needed,He . In the case where
only one relevant effective parameterTe remains, these func
tions do not depend on the path along which its value
been reached.

As we saw in @3# for the VFTH relaxing model atT
.T0 and in the Appendix for the Arrhenius relaxing ca
@see Eqs.~A25! and ~A35!#, the effective temperature alon
is enough for a complete thermodynamic description of
dominant physical phenomena (He5H). The introduction of
He becomes important only for second-order corrections
dm2.

III. INHERENT STRUCTURE APPROACH

The characteristics of a glassy system may be represe
by means of a multidimensional potential-energy funct
with a complex topography. The spatial patterns of atom
crystals and in amorphous systems, at low temperature,
resent minima in the potential-energy function describing
interactions@4,5#.

In the case of the model~2.1!, all the complex chemica
properties of real glass formers do not occur, neverthel
the system exhibits several aspects of their complex featu
indicating that our simple model is complicated enough
what concerns the description and the comprehension o
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basic long-time properties of a glass@3#.
In a real glass, the presence of distinct processes~acting

on different time scales! may be obtained from a carefu
analysis of the relaxation response function aboveTg . We
limit ourselves to a two-time-scale approach. This means
the deep and wide local minima at and belowTg are geo-
metrically organized to create a two-scale-length potent
energy pattern. As a consequence, the system showsa andb
processes. Thea processes represent the escape from
deep minimum within a large scale valley to another vall
This escape requires a lengthy directed sequence of elem
tary transitions producing a very large activation ener
Moreover, the high-lying minima between any two valley
among which the system is making a transition, are ma
and degenerate. This implies a large activation entropy
the interbasin transition.b processes are instead related
elementary relaxations between neighboring minima~intra-
basindynamics!.

Note that in our models, we put together all kinds ofb
processes in our short time scale, since they are in any
much shorter than the observation time considered.

A. Decomposition of the partition function: Introduction
of inherent structures

In this point of view, an approximate approach to t
problem is to divide the complicated multidimensional lan
scape of the~potential! energy in structures formed by larg
deep basins and to describe the dynamics of the proce
taking place as intrabasin and interbasin@4,5#.

More precisely, one can define an inherent structure~IS!
as that basin behind an actual configuration of the sys
evolving in time at some temperatureT that is the minimum
of the potential energy reached in an instantaneous que
ing by the method ofsteepest descent.

The introduction of IS’s allows, at low enough temper
ture (T,Tg), a decomposition of the partition function int
an IS part, connected to the zero-temperature landscape
responding to the configurations of the system at tempera
T, and a part connected to the thermal excitation of the c
figurations in a single minimum.

The probability that an equilibrium configuration atT
51/b belongs to a basin associated with an IS structure w
an energy density in the interval@e,e1de# is @4,13,8,9#

P~e,T!de} exp$2bN@e2Tsc~e!1 f v~e,T!#%de,
~3.1!

wheresc(e) is proportional to the logarithm of the number o
IS’s existing at the energy levele and f v(e,T) is the free
energy of the configurations inside an IS at energye ~related
to a temperatureT system!. To derive the distribution~3.1! in
this form the approximation is made thatf v is computed as
the average over all the IS’s of energye. This means that, by
assumption, the shape of a basin depends only on its en
level and on the temperature. Enough belowTg the further
approximation may be made, thatf v(e,T); f v(T), because
fluctuations inside one IS are small@12,13#. The shape of the
basin depends, then, only on the temperature. All the inte
~vibrational! states of any IS have the same~vibrational!
5-6
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free-energyf v at givenT. We anticipate, however, that in th
present study, we will not carry out such an approximat
for our models.

IS dynamics are significant, i.e., they significantly rep
sent the actual dynamics of the system at finiteT, provided
that there is a one-to-one correspondence between IS’s
real minima of the thermodynamic potential at finite te
perature and provided that these IS’s are visited with
same frequency with which the corresponding finiteT
minima are visited.

B. How it is carried out in mean-field spherical p-spin model

For what concerns disordered spin systems, in orde
find the stable solutions, the TAP@14# approach may be used
Following this approach, for fixed quenched disorder,
spin fluctuations are averaged out, leaving self-consis
equations for the averages of the spins, i.e., the local ma
tizations. These equations may be derived by a variation
mean-field free-energy functional of the local magneti
tions. The solutions of TAP equations~TAP states or pure
states! are, therefore, minima of the free-energy landsca
once that the fluctuations have been eliminated perform
an average. Every TAP state is characterized by a set of l
magnetizationsmi , wherei 51, . . . ,N and N is the size of
the system. The inherent structures, then, follows from T
construction in the limit of the temperature going to zero

C. Inherent structure approach in the harmonic-oscillator
spherical spin model

As we will see, the model~2.1! is built in such a way that
every$xi% configuration is an inherent structure. Indeed, a
given$xi% configuration at finiteT, the$Si% are fast variables
and they contribute to the energy and to the other obs
ables as a noise depending on temperature. If we take a
this contribution, we do not actually change the configu
tions of the minima of the slow variables. In the case of
system without constraint on the configuration space,
contrived dynamics~see Sec. II C 2!, any $xi% configuration
is an inherent structure. For what concerns the constra
model, instead, certain configurations are not allowed~Sec.
II C 1!. Moreover, the presence of the constraint~2.9! pro-
duces~entropic! barriers higher than in the other case to g
from a certain IS to a different one. That just means that
dynamics through the inherent structures is even slowe
the fragile glass case than in the strong glass case.

First of all, we have to define the steepest descent pro
dure for the model. We start performing the minimization

H1l(
i 51

N

Si
22lN, ~3.2!

whereH is the Hamiltonian~2.1! of the model and where we
implemented the spherical constraint( iSi

25N by using the
Lagrange multiplierl.

To get rid of the contribution of the spins, i.e., to get rid
the fast modes, we minimize Eq.~3.2! with respect to the
$Si%. We get
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Si
(min)5

Jxi1L

2l
; i . ~3.3!

Inserting this value forSi and solving the spherical conditio
( i 51

N (Si
min)25N for l, we find

l5
wis

2
, ~3.4!

wherem1 andm2 are defined in Eq.~2.3! and

wis[AJ2m212JLm11L2. ~3.5!

Using Eqs.~3.4!, the minimum$Si% configuration for a given
set of$xi% is, thus, given by

Si
(min)5

Jxi1L

wis
; i . ~3.6!

Finally, the expression~3.2! becomes

His[NFK

2
m22Hm12wisG ~3.7!

that is the energy function of the inherent structures. Con
quently, the partition sum over inherent structures is defin
by

Zis5E Dx exp@2bHis#5E dm1 dm2 exp~I2bHis!.

~3.8!

Due to the minimization, any explicit dependence onT in the
effective Hamiltonian disappears@compare Eqs.~2.5! and
~3.7!#. In Eq. ~2.2!, we integrated over the spins, instead
minimizing with respect to them, and therefore we also h
an entropic termTSep for the fast processes, withSep given
in Eq. ~2.8! and a slightly different internal energy@Nw in-
stead ofNwis , with w given in Eq.~2.4! andwis in Eq. ~3.5!#.
In the inherent structure approach, instead, carrying out
steepest descent makes the entropic term vanish~only the
minimal configuration is taken into account! and the effec-
tive Hamiltonian, given in Eq.~3.7!, has no explicit depen-
dence on the temperature. All by all, we notice a close an
ogy with the inherent structures in the sphericalp-spin
model: in both cases, one may sum out fast processe
finite T, and then send the temperature to zero to get
inherent structures.

The configurational entropy for IS’s comes from the Jac
bian of the transformation of variablesDx5eIdm1 dm2 @see
Eqs.~2.3! and~2.14!#. It is the same of the finiteT case, since
any allowed configuration$xi% is also an IS.

The static average ofHis is given by

Eeq
is ~T!5His@m̄1,2

(is)~T!#, ~3.9!

where m̄1,2
(is)(T) are the solutions of the saddle-point equ

tions that we get in the IS case to compute Eq.~3.8!, in the
limit of large N. The equations are
5-7
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m̄1
(is)5

D

J~K2J2/wis!
2

L

J
5

H̃ is

K̃ is

, ~3.10!

m̄2
(is)2~m̄1

(is)!25
T

D
~Jm̄1

(is)1L !5
T

K̃is

, ~3.11!

where we define

H̃ is[H1
JL

wis
; K̃ is[K2

J2

wis
, ~3.12!

with wis from Eq. ~3.5!. The combinationH̃ isJ1K̃ isL5HJ
1KL5D is, again, simple, as in Eq.~2.12!.

In the case at finiteT, the static partition function~2.13!
was

Z5E dm1 dm2 exp~I2bHeff!, ~3.13!

with Heff defined in Eq.~2.5! andI in Eq. ~2.14!. The two
saddle-point equations are different from Eqs.~2.15! and
~2.16! valid in the realistic case, giving thus different resul
m̄1,2

(is)Þm̄1,2. We note explicitly thatm̄1,2
(is) depends onT even

in the IS case.
Comparing the expressions so far obtained with those

pearing in the exponent of the probability distribution~3.1!
we identify the configurational entropyNsc with I, as de-
fined in Eq.~2.14!, and the rest with

N~e1 f v!5Heff~$xi%!5His~$xi%!1Fv~$xi%!, ~3.14!

where, as already told,His($xi%) is the IS internal energy an
from the difference Heff($xi%)2His($xi%)5Fv($xi)% the
thermal free energy of one IS turns out to be

Fv5
T

2
lnS w1T/2

T D2N~w2wis!, ~3.15!

wherew is defined in~2.4! and wis in ~3.5!. Notice that it
explicitly depends on the parametersm1 and m2 of the IS,
whereas in literature it is often assumed to be a cons
~harmonic approximation@4,5,12,13,8,9#!.

D. Effective temperature in the IS’s approach

1. Expansion of the dynamical energy

A possible way of defining an effective temperatu
sometimes used in literature, for instance in the study
Lennard-Jones interacting spheres@12,13# and in the study of
the random orthogonal model@8#, is to compare the time
dependent out of equilibrium mean internal energy with
equilibrium mean internal energy expression at a tempera
TeÞT. The out of equilibrium mean internal energy is bu
taking the dynamics of a system out of equilibrium at te
peratureT and repeating it many times starting from differe
initial conditions. A statistical ensemble of trajectories
constructed in this way. At any given timet, the configura-
06612
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tions that each sample is visiting are found. The energyHis
averaged over the ensemble of different trajectories is

Ed
(is)~ t ![^His& t[N

K

2
m2~ t !2NHm1~ t !

2NAJ2m2~ t !12JLm1~ t !1L2 ~3.16!

.N
K

2
m̄2

(is)2NHm̄1
(is)2NAJ2m̄2

(is)12JLm̄1
(is)1L2

1NK̃is~m̄1
(is) ,m̄2

(is)!dm2~ t !

1C~m̄1
(is) ,m̄2

(is)!dm2~ t !2, ~3.17!

wheredm2(t)[m2(t)2m̄2(T) is given by Eq.~2.37! in the
Arrhenius case and by Eq.~2.33! in the constrained case fo
T>T0. The last three terms are

Eeq
(is)~T!5N

K

2
m̄2

(is)2NHm̄1
(is)2NAJ2m̄2

(is)12JLm̄1
(is)1L2.

~3.18!

The equilibrium IS energyEeq
(is)(T) will be a different func-

tion of the temperature in the two dynamic versions of t
model. The second-order expansion will be needed only
the strong glass case and the expression for the fa
C(m̄1

(is) ,m̄2
(is)) is, in that case

C~m̄1
(is) ,m̄2

(is)!5
DJ4K2

8~D1J2!4
. ~3.19!

We may then take a system in equilibrium at a temperat
Te , such that the configurations visited by the system
equilibrium are the same as those out of equilibrium at te
peratureT. This we call effective temperature. To be mo
precise, fixingt, Te is defined as the temperature at which t
system at equilibrium would visit the same configuratio
visited by the system out of equilibrium at temperatureT,
with the same frequency.

2. The effective temperature employed in numerical approache
The fragile case

Following the approach found in literature@12,13,8# for
numerical simulations, we may define aTe1

(is) through the
matching of the equilibrium and the out-of-equilibrium I
internal energy: it is the one such that

Eeq
(is)@Te1

(is)~ t !#5Ed
(is)~ t !. ~3.20!

For our paper, it is possible to work out an analytic expr
sion for such aTe1

(is)(t), at least near the Kauzmann transitio
for the fragile glass case, linearizing inT2T0.

What we get is a parameter different from the thermod
namic effective temperature~2.41! that we got from three
different approaches~including the Fluctuation-Dissipation
Ratio! in @3#.

For the fragile glass case, we are not able to derive
simple expression, of the IS energy~3.16!, but we may in
5-8
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any case solve it exactly. The results are shown in Figs. 1
2 for a given choice of the values of the interaction para
eters and of the VFTH exponent of the model. As one c
see,Te1

(is)(t) turns out to be different fromTe(t) at any time
decade.

As a matter of fact, what we are comparing now with t
averageEd(t) is a functionEeq(Te1

(is)) of the effective tem-
perature alone, while we know that out of equilibrium, a
proper thermodynamic function cannot simply depend
just one temperature as the thermodynamic functions
equilibrium systems do@25#. It is not surprising, thus, tha
the two functions do not coincide.

FIG. 1. Effective temperatures vs t at the heat bath tempera
T54.002 48, equal to the Kauzmann temperature. The constan
the Hamiltonian~2.1! are set to the following values:K5J51, H
5L50.1. The constraint constant ism055. The upper curve show
the effective temperature got by matching out of equilibrium a
equilibrium IS internal energy. The one in the middle is the beh
ior of Eq. ~2.41!, for systems at finiteT, and the lowest one is the IS
effective temperature~3.29!.

FIG. 2. The same effective temperatures, for the same choic
parameters as before are plotted for a different heat bath temp
ture: T54.1.
06612
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3. The effective temperature employed in numerical approache
The strong case

For the strong glass case, it is possible to work ou
simple analytic expression for the dynamical and the equi
rium IS energy. To do it, we will expand near zero tempe
ture up to second order inT.

We underline that the thermodynamic effective tempe
ture given in Eq.~2.41! is also the expression of the effectiv
temperature for the system without constraint. What chan
in that case is the time behavior ofm22m1

25m2, that is now
given by Eq. ~2.36!, and its limit at equilibrium@see Eq.
~2.16!#. In this case, where the analytic treatment is, by f
easier, we can give a short explicit expression forTe1

(is)(t):

Te1
(is).T1

KD

D1J2
dm2~ t !1

J4K2

2~D1J2!3
Tdm2~ t !1O~T3!

1O„dm2~ t !3
…. ~3.21!

Here, terms of O(T2) and O„dm2(t)2
… cancel. This

Te1
(is)(t,T) is obtained from Eq.~3.20! with

Ed
is~ t !

N
.2

~H1J!2

2K
2L1

T

2
2

J4K

8D~D1J2!2
T2

1
KD

2~D1J2!
dm2~ t !1

J4K2

8D~D1J2!2
Tdm2~ t !

1
DJ4K3

8~D1J2!4
dm2~ t !21O~T3!1O„T2dm2~ t !…

1O„Tdm2~ t !2
…1O„dm2~ t !3

…. ~3.22!

If we expand~2.41! in the same way, we get

Te5T1K̃dm2~ t !5T1
KD

D1J2
dm2~ t !1

T

2 S JK

D1J2D 2

dm2~ t !

1
DJ4K3

2~D1J2!4
dm2~ t !21O~T3!1O@T2dm2~ t !#

1O@Tdm2~ t !2#1O@dm2~ t !3#. ~3.23!

As we see from the formulas above, and from Figs. 3 a
4, for a given choice of the parameter values, in the case w
Arrhenius relaxationTe andTe1

(is) are very similar. Their dif-
ference is one order of magnitude less than in the model w
contrived dynamics.

4. A more fundamental definition of the IS effective temperatur

Here, we propose an alternative way to identify an effe
tive temperature that maps the dynamics between inhe
structures into a thermodynamic quantity. We follow a qu
sistatic approach using a partition sum, just as we did in
finite T case. The aim is to be able to define an effect
thermodynamic parameter for the IS dynamics and to co
pare it with theTe given in Eq.~2.41!. Following exactly the
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same approach we used in@3# ~see Sec. II D!, including the
substitution of the real external fieldH with the effective one
He2

(is) , we compute the partition function counting all th
macroscopically equivalent IS’s, through which the system
evolving in this symbolic dynamics, at a given timet.

Ze
(is)~m1 ,m2!5E Dx exp@2be2

(is)His~$xi%;T,He2
(is)!#

3dS Nm12(
i

xi D dS Nm22(
i

xi
2D ~3.24!

FIG. 3. Time evolution of the effective temperatures at the h
bath temperatureT50.0005 in the model with Arrhenius relaxation
The constants in the Hamiltonian~2.1! are set to the following
values:K5J51, H5L50.1. The lower curve shows the effectiv
temperature~3.21! got by matching out of equilibrium and equilib
rium IS internal energy. To orderdm2 it coincides analytically with
the IS effective temperature~3.34!. Second-order differences are to
small to appear in the plot. The upper curve is the behavior of
~2.41!, for systems at finiteT.

FIG. 4. The same effective temperatures, for the same choic
parameters as before are plotted for a different heat bath temp
ture:T50.001. Comparing the time scales of the two plots, we c
clearly observe the decreasing of the Arrhenius relaxation tim
equilibrium teq that takes places raising the temperature.
06612
is

5 expH 2be2
(is)NFK

2
m22He2

(is)m12w̄is

2
Te2

(is)

2
ln~m22m1

2!G J ~3.25!

. exp$2be2
(is)@His~m1 ,m2 ;T,He2

(is)!

2Te2
(is)I~m1 ,m2!#%. ~3.26!

be2
(is)51/Te2

(is) andHe2
(is) are parameters describing the beha

ior of the system going only through IS’s. Minimizing th
free energyFe

(is)[2Te2
(is)ln Ze

(is) with respect tom1,2 we get

Te2
(is)5K̃ is~m1 ,m2!@m22m1

2#, ~3.27!

He2
(is)5H2K̃ is~m1 ,m2!m1 . ~3.28!

By inserting the time-dependent values ofm1 and m2 we
now look at the time evolution of the effective temperatu
~3.27! for large times, in the aging regime, and we compa
it with the behavior of the thermodynamic effective tempe
ture ~2.41!.

For the dynamically constrained model, fort→`, Te2
(is)

→T ~if T.T0). When t0!t,`, however, the way the ef
fective temperature approaches the heat-bath temperatu
different from the behavior~2.41! of Te , found in the case a
finite temperature. For a comparison, their first-order exp
sions are

Te2
(is).T1S 11T

K̃ is,`~T!Q`
(is)J2

2D~11Q`
( is)D !

D K̃ is,`~T!dm2~ t !,

~3.29!

Te.T1S 11T
K̃`~T!Q`J2

2D~11Q`D !
D K̃`~T!dm2~ t !, ~3.30!

with

K̃ is,`~T!5 lim
t→`

K̃ is@m1~ t !,m2~ t !;T#, ~3.31!

K̃`~T!5 lim
t→`

K̃@m1~ t !,m2~ t !;T#,

Q`
(is)5 lim

t→`

J2D

K̃ is
3wis

3
, ~3.32!

Q`5 lim
t→`

Q5 lim
t→`

J2D

K̃3w~w1T/2!2
. ~3.33!

The time-dependent variabledm2(t) @introduced in Eq.
~2.33!# is the same in both cases~apart from the parametert0
influencing only the short times! while the coefficients in
front of it are different at any temperature, includingT0. In
the fragile case, thus, this second IS effective tempera
does not coincide withTe1

(is) and it is much nearer, at an
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time, to Eq.~3.30!. However, even if thisTe2
(is) is conceptu-

ally more properly chosen than the one defined matching
of equilibrium energy at temperatureT and equilibrium en-
ergy at temperatureTe1

( is) , we still do not get the same pa
rameter describing the finiteT dynamics in a thermodynami
frame. The inherent structure approach gives thus a g
approximation but is nevertheless never analytically corr
in the description of the real temperature dynamics. To sh
how good this approximation is, we may take as an insta
a certain realization of the model with given values of t
‘‘fields’’ and ‘‘coupling constants.’’ We plot in Figs. 1 and 2
the behavior ofTe1

(is)(t), Te2
(is)(t), andTe(t) at heat-bath tem-

peratures equal to and just above the Kauzmann tempera
For the strong glass case, we also expand for tempera

near to zero and for long time and we get

Te2
(is)~ t !5T1K̃ isdm2~ t !5T1

KD

D1J2
dm2~ t !

1
T

2

J4K2

~D1J2!3
dm2~ t !1

DJ4K3

2~D1J2!4
dm2~ t !2

1O~T3!1O@T2dm2~ t !#1O@Tdm2~ t !2#

1O@dm2~ t !3# ~3.34!

5Te~ t !2
DJ2K2

2~D1J2!3
Tdm2~ t !1O@dm2~ t !3#

1O~T3!1O@T2dm2~ t !#1O@Tdm2~ t !2# ~3.35!

5Te1
(is)~ t !1

DJ4K3

2~D1J2!4
dm2~ t !21O~T3!

1O@T2dm2~ t !#1O@Tdm2~ t !2#1O@dm2~ t !3#,

~3.36!

wheredm2(t) is given by Eq.~2.37!.
The effective temperatureTe mapping the dynamics o

the system evolving at finite-temperatureT have the same
behavior ofTe2 in approaching the heat-bath temperature
to order Tdm2(t) where they start deviating one from th
other. For a quenching to zero temperature, the two effec
temperatures coincide. Moreover, due to the simplicity of
model, the IS effective temperatureTe2

(is) is equal toTe1
(is)

given in Eq. ~3.21! up to orderdm2(t) in time and up to
orderT2 in temperature.

IV. CONCLUSIONS

In this paper, we consider a model that owns all the ba
properties of a glass, built by processes evolving on t
well-separated time scales, representing thea and b pro-
cesses taking place in real glassy materials@3#. The decou-
pling of time scales is fundamental for a generalization
equilibrium thermodynamics to systems far from equil
rium.

We take into account two different versions of the mod
06612
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given by Eq.~2.1!. One leading to the description of a fragi
glass having a nonzero Kauzmann temperature and the o
one representing a strong glass.

Using a particular Monte Carlo dynamics and develop
it analytically, thus having the opportunity of probing it i
more detail with respect to a numerical study, we fou
equations of motion that are in all respect those typical
glass relaxation.

In the strong glass case, we apply exactly the same pa
lel Monte Carlo dynamics used in@16–18,25#, finding an
Arrhenius relation between the relaxation time of the sl
processes$xi% and the temperature.

In the fragile glass case, the model is provided with
constraint applied to the harmonic-oscillator dynamics, i
to the slow processes dynamics, in order to reproduce
behavior of a good fragile glass former. In@3#, by means of a
Monte Carlo constrained dynamics, we identified the Ka
mann temperature with the oneT0 at which the constraint is
reached, for the first time in a cooling experiment from hi
temperature. There we showed how the thermodyna
phase transition@27#, that takes place due to the breaking
the ergodicity in the landscape of our model, is charac
ized.

In this paper, we carried out the inherent structure
proach. In both dynamical models, decreasing the temp
ture, the free-energy local minima do not split into smal
local minima, just like in thep-spin model in zero magnetic
field @11#, because every allowed configuration of harmon
oscillators is and remains an inherent structure at any t
perature. Consequently, we may set a one-to-one corres
dence between the minima of the free energy and the one
the potential energy~i.e., the inherent structures!. Because of
this exact correspondence, the dynamics through inhe
structures should be a valid symbolic dynamics for the r
system, i.e., at a finite heat-bath temperatureT. At least, it
would significantly represent the actual dynamics if the
herent structures are visited with the same frequency w
which the corresponding free-energy minima at finiteT are
visited.

In our paper, the proper way to define IS’s is to minimi
the model Hamiltonian@Eq. ~2.1!# with respect to the spheri
cal spins, i.e., the fast relaxing variables. Performing suc
minimization, we get the effective Hamiltonian given by E
~3.7! instead of the one given by Eq.~2.5!, where Eq.~3.7! is
just Eq.~2.5! for T50: due to the minimization any explici
dependence onT disappears. The configurational entropy f
inherent structures was computed from the logarithm of
Jacobian of the transformation of variablesDx→dm1 dm2,
and thus it was the same of the exact finiteT approach. In
our models, then, any configuration of harmonic-oscillat
$xi% ~for the fragile glass model, every configuration allow
by the constraint!, is also an inherent structure. Although th
models we considered are conceptually very simple
without interactions, as compared to another approach
posed for systems with interacting discrete spins where
IS scheme breaks down@28#, our setup seems to be mor
physical since it is intimately based on time scale separa
between fast and slow processes. A direct consequenc
this time scale separation is that we encounter both a m
5-11
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ematically and physically well-defined configurational e
tropy, whereas this observable suffers from principle diffic
ties in other approaches@28#.

We may take a system in equilibrium at an effective te
peratureTe

(is) , such that the configurations visited by the sy
tem at equilibrium are the same as those out of equilibrium
temperatureT. First, we defined an effective temperatu
through the matching of the equilibrium and the out-o
equilibrium internal energy of the inherent structures@the
one such thatE„Te

(is)(t)…5Ed(t)#. For the strong glass
model, this effective temperature almost coincides withTe
provided that the temperature at which the system
quenched is not too high@as far as terms ofO„Tdm2(t)… are
negligible they are equal#. On the contrary, when the con
straint is set and the contrived Monte Carlo dynamics is
plied, we found that the thus derived effective temperat
Te1

(is) is quite different from the effective temperature that w
were able to identify in the finiteT dynamics. Therefore, we
proposed a definition following a quasistatic approach.
this way, we computed the partition function counting all t
macroscopically equivalent inherent structures, throu
which the system is evolving in this symbolic dynamics, a
given time t. Even though the result we get is much mo
similar to the finiteT dynamics effective temperature~nu-
merically speaking the difference is one order of magnitu
smaller!, yet it is analytically different, indicating that th
inherent structure scheme for the study of dynamics can o
be an approximation to what happens in the realistic dyn
ics of the system. As a consequence, also the derivatio
out-of-equilibrium thermodynamic quantities~e.g., the con-
figurational entropy! obtained making use of this approac
could suffer of a systematic deviation from the exact res
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APPENDIX: STRONG GLASS DYNAMICS

In this Appendix, we present the Monte Carlo dynam
of the observablesm1 andm2, functions of the slow relaxing
harmonic-oscillators$xi% through

m15
1

N (
i

xi , m25
1

N (
i

xi
2 , ~A1!

in the case where the model~2.1! is not subjected to any
constraint on its$xi% configurations.

Let us recall the definitions, given in Sec. II C,

m1[
H̃

K̃
2m1 , ~A2!

m2[m22m1
2 . ~A3!
06612
-
-

-
-
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t.
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s

In this notation, the average and the variance~2.23! of the
Gaussian distributionp(xum1 ,m2) @see ~2.21!# of the pos-
sible changes in energy during the Monte Carlo dynam
become

x̄5
D2K̃

2
, Dx5D2K̃2~m21m1

2!. ~A4!

We remember thatx is the difference~2.20! between the
energy of the configuration proposed for the exchange
the energy of the actual configuration.D is fixed.

To shorten the following expressions, we also define
parameter:

a[
x̄

A2Dx

5A D2

8~m21m1
2!

. ~A5!

The two basic quantities that have to be computed in orde
solve the dynamic equations form1 and m2 are the accep-
tance rate of the Monte Carlo updating

A~ t ![E dx W~bx!p~xum1 ,m2!, ~A6!

and the rate of change of the energy of the system,

I 1~ t ![E dx xW~bx!p~xum1 ,m2!. ~A7!

Defining the auxiliary function

f ~ t ![ x̄b expS 2b x̄1
b2Dx

2 DerfcSADx

x̄
b2a D ,

~A8!

where

erfc~a![
2

Ap
E

a

`

dz e2z2
, ~A9!

we can write down the exact expressions forA and I 1 as

A5
1

2 Ferfc~a!1
f

b x̄
G , ~A10!

I 15
x̄

2 Ferfc~a!1S 12
b x̄

2a2D f

b x̄
G . ~A11!

The Monte Carlo equations of motion form1 andm2 are
formally the same found for the fragile glass case@3#

ṁ152JQE dx xW~bx!p~xum1 ,m2!

2~11DQ!E dx ȳ~x!W~bx!p~xum1 ,m2!,

~A12!
5-12
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ṁ25
2

K̃
E dxxW~bx!p~xum1 ,m2!

12m1E dx ȳ~x!W~bx!p~xum1 ,m2!. ~A13!

From Eq.~2.23!, we know ȳ(x) and we may rewrite it as a
function of the above-defineda and x̄:

ȳ~x!54a2m1S 12
x

x̄
D . ~A14!

Using this, we get

ṁ152S JQ2
8a2m1~11DQ!

D2K̃
D I 1~ t !

24a2m1~11DQ!A~ t !, ~A15!

ṁ25
2

K̃
S 12

8a2m1
2

D2K̃
D I 1~ t !18a2m1

2A~ t !. ~A16!

1. Dynamics in the aging regime: Zero temperature

First of all, we solve the equation of motion form2 at T
50, neglecting terms of orderm1

2 with respect to those o
orderm2. For long timesa@1. We can, then, expandI 1(t)
for largea, getting

I 1~ t !.2
e2a2

2aAp

D2K̃

4a2
. ~A17!

Equation~A16! becomes then

ṁ2.2
e2a2

2aAp

D2

4a2
, ~A18!

otherwise written as

ȧ.
e2a2

Ap
, ~A19!

or

ṁ2.22m2
3/2

expS 2
D2

8m2
D

Ap
. ~A20!

At T50, the solution in the aging regime, expressed inm2
.D2/(8a2), turns out to be

m2~ t !.
D2

8

1

ln
2t

Ap
1

1

2
ln ln

2t

Ap

. ~A21!
06612
Always at zero temperature, the leading order of the exp
sion of the acceptance rateA is, for a@1,

A.
e2a2

2aAp
. ~A22!

Combining this with Eq.~A17!, the Monte Carlo equation o
motion ~A15! takes the form

ṁ15
e2a2

2aAp
H JQD2K̃

4a2
22m1~11DQ!~2a211!J .

~A23!

Dividing Eq. ~A23! by Eq. ~A18!, we may write down a
differential equation form1 as a function ofm2

dm1

dm2
.16~11DQ!

a4

D2
m12JQK̃, ~A24!

where we have neglected terms of order 1/a2 with respect to
those of order one. In the adiabatic approximation, obtai
by neglecting the left-hand side, the solution of Eq.~A24!
turns out to be

m1.
4JQK̃

D2~11DQ!
m2

2 . ~A25!

At zero temperature and for long times, one thus hasm1

;m2
2!m2.

2. Dynamics in the aging regime:TÌ0

If T is above zero, the leading order of the expansion oA
and I 1 for large times (a@1) and small temperature are

A.
e2a2

2aAp

1

12
4Ta2

D2K̃

, ~A26!

I 1.
e2a2

2aAp

D2K̃

4a2

12
8Ta2

D2K̃

S 12
4Ta2

D2K̃
D , ~A27!

where the termsTa2 are ofO(1). Indeed, it is

8Ta2

D2K̃
5

8T

D2K̃

D2

8m2
5

m̄2

m2
5

1

11
dm2

m̄2

, ~A28!

@see the definition ofa ~A5!#, so that

lim
t→`

8Ta2

D2K̃
51, T.0. ~A29!
5-13
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In this notation, Eqs.~A26! and~A27! may be rewritten also
as

A5
e2a2

aAp

11
dm2

m̄2

112
dm2

m̄2

, ~A30!

I 152
e2a2

aAp

D2K̃

a2

dm2

m̄2

11
dm2

m̄2

S 112
dm2

m̄2
D 2 ~A31!

and the Monte Carlo equations are now

ṁ1.
e2a2

aAp

11
dm2

m̄2

112
dm2

m̄2

F 24a2~11DQ!m1

1
JQD2K̃

2a2

dm2

m̄2

1

112
dm2

m̄2

G , ~A32!

ṁ2.
e2a2

aAp

D2

a2

dm2

m̄2

11
dm2

m̄2

S 112
dm2

m̄2
D 2 . ~A33!

The solution to Eq.~A33! is, to leading order,

m2~ t !.
D2

8

1

ln
2t

Ap

. ~A34!
ly-

06612
The behavior ofm1 comes out to be

m1.
4JQK̃

D2~11DQ!
m2

2dm2

m̄2

2

112
dm2

m̄2

. ~A35!

Notice that this vanishes when equilibrium is approach
since thendm2→0.

For times even longer than the time scale of the ag
regime, the system finally relaxes, exponentially fast,
equilibrium. The equilibrium value ofm2 is known from the
statics~see Sec. II!, as

m̄25
T

K̃`~T!
, ~A36!

where the explicit expansion ofK̃`(T) in temperature is
shown in Eq.~2.38!. The asymptotic value ofa is, from its
definition ~A5! and taking the first-order expansion inT,

a~T!5A D2

8m̄2~T!
.AAs

T
, ~A37!

with

As[
D2KD

8~D1J2!
. ~A38!

From the equations of motion studied above@look for in-
stance at Eq.~A19!#, we find for the relaxation time to equi
librium

teq}ea2
. ~A39!

Using Eq.~A37!, this is nothing else than the Arrhenius la

teq; expS As

T D . ~A40!
ag.
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