PHYSICAL REVIEW E, VOLUME 64, 066125
Inherent structures in models for fragile and strong glass
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An analysis of the dynamics is performed of exactly solvable models for fragile and strong glasses, exploit-
ing the partitioning of the free-energy landscape in inherent structures. The results are compared with the exact
solution of the dynamics, by employing the formulation of an effective temperature used in literature. Also, a
statistical mechanics formulation is introduced, based upon general statistical considerations, which performs
better. Though the considered models are conceptually simple, there is no limit in which the dynamics may be
exactly described by a symbolic dynamics of the system moving through consistently weighted inherent
structures.
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[. INTRODUCTION widely used in numerical simulatiorjd—6,8—10,12,1B ap-

The characteristics of a glassy systgh?] arise from the  plies to our analytically solvable models. We will compare it
complex topography of the multidimensional function repre-with the exact dynamic solution, achieved without any par-
senting the collective potential energy that gives rise to ditioning of the configuration space.
nontrivial partition function and thermodynamic potential. In  In Sec. Il, we introduce the two kinetic models and we
this picture, at low enough temperature where vibrations argive the description of their statics and of their Monte Carlo
minimal, the spatial atomic patterns in crystals and in amordynamics. In Sec. lll, we develop the inherent structure ap-
phous systems share the common basic attribute that bofifoach for the dynamics of such models and we define two
represent minima in the potential-energy function describinglifferent inherent structure-effective temperatures mapping
the interactions. The presence of distinct processes acting dhe dynamics into a thermodynamic frartie Sec. Il D);
two different time scales means that the deep and wide locaine definition follows the literature on numerical simulations
minima at and below the glass transition temperafiyyare [4-10,12,13 the other exploits the analytic solvability of
geometrically organized to create a two length-scalghe models.
potential-energy patterily depends on the cooling proce-
dure and it is usually determined as the temperature at which
the viscosity of the glass former reaches the value 4f.10

In the present paper, we investigate, using the inherent A. Hamiltonian and constraint on the configuration space
structure approach, exactly solvable model glass that shows
all the basic features of real glas§&$. We study two mod-

Il. THE MODELS AND THEIR PROPERTIES

We present two dynamical models, having the same stat-
Is: for the fradile al q for th Thics, but different dynamics leading to the behavior of a frag-
els: one for the fragile glass and one for the strong one. Thg, glass in one case and to the behavior of a strong glass in

models are bu'l.t by processes evoIv_lng on two dlfferent’the other one. The model describing a system relaxing like a
well-separated time gcales, representlng, respectlv_elyathe fragile glass was introduced if15] and widely studied in
and B processes taking place in real glassy materials. Th

slow a processes represent the escape from one deep mini-'goi models are described by the following local Hamil-
mum within a large scale valley to another valley. The fast gnian:
processes, instead, are related to elementary relaxations be-
tween neighboring minima inside the same valley. We con- 1 N N N N
sider here all kinds of3 processes as equivalent, since the H[{x;},{S}]= EKE x?—HZ xi—JE xiSi—LE S,
characteristic time scales on which they are evolving are in =1 =1 =1 =1
any case much shorter than the time scale ofdtlprocesses 2.1
(i.e., the observation time
In the general case, decreasing the temperature, the freehere N is the size of the system aniki} and {S;} are
energy local minima may, in principle, be split into smaller continuous variables, the last satisfying a spherical con-
local minima. But if we may assume that they maintain theirstraint:EiS|2= N. We call them, respectively, harmonic oscil-
identity in spite of this splitting, we can set a one-to-onelators and spherical spinK.is the Hooke elastic constart,
correspondence between local minima and inherent struds an external field acting on the harmonic oscillatdris, the
tures[4—7], i.e., between the minima of the free energy andcoupling constant betweelx;} and{S;} on the same site
the ones of the potential energy. Actually, such a splittingand L is the external field acting on the spherical spins. A
does not even occur in the two dynamical models presenteseparation of time scales is introduced by hand: the spins
here, making the correspondence exact at all temperaturegpresent the fast modes and the harmonic oscillators the
The same happens, for instance, in mean-field spin-glassiow ones. We assume that g} relax to equilibrium on a
models, such ap-spinlike modeld8-11]. time scale much shorter than the one of the harmonic oscil-
In this paper, we will see to which extent such a schemelators. From the point of view of the motion of tf&;}, the
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spins are just a noise. To describe the long-time regime of thenplementing a large degeneracy of the allowable lowest
{xi}, in[3], we can average over this noise by performing thestates. The constraint is taken on the}, thus concerning
computation of thg S;} partition function, obtaining an ef- the long time regime. It reads

fective Hamiltonian depending only on tHg;}, that deter- )

mines the dynamics of these variab[és the analysis with My —mi=my, (2.9
inherent structures, we will not carry out this average but we
will start from the “bare” Hamiltonian, Eq(2.1)]. Using the
saddle-point approximation for lardé we find,

wherem, is a model parameter. It is a fixed, but arbitrary,
strictly positive constant. This constraint applied to the
harmonic-oscillators dynamics is a way to reproduce the be-
havior of good glass formers. We imposed a Monte Carlo
dynamics[16,17] satisfying this constraint and coupling the
Zslixi})= f ( dS)exp{ AHIDGHSH otherwise noninteractingx;} in a dynamic way. As we saw
N in [3], the system exhibits a Vogel-Fulcher-Tammann-Hesse
2 2 N) (VFTH) relaxation[24], characterizing a fragile glass.
P S To model a strong glass, instead, we will consider the
same model Hamiltonian but without imposing any con-
} straint and making use of a different Monte Carlo dynamics.

K T w+T/2
=exp —BN|z=m,—Hm;—w+=In

We will show later(Appendix that this dynamics displays
an Arrhenius relaxation near zero temperature. In this case,
(220 \wehavea strong glass, as it happens for similar models, e.g.,
. the oscillators moddl17] and the spherical spins modéls]

where we introduce the short hands where exactly the same dynamics is applied. The point of the
present paper is that now there are both fast and slow pro-

N N

1 cesses.
2 M=y 2 ' 2.3 To shorten the notation, we define the modified “spring

constant’K and “external field”H,

2 2 T

Z|I—‘

and JZ ~ JL

K=K=Gr72r PR a7 @10

T2
_ /72 2, 1 - -
W= \/‘] My +20Lbmy #1754 @4 \We stress thak and F are actually functions of théx;}

themselveqthroughm,; and m,, occurring inw). We also
We define, then, the effective Hamiltoniaftq({x;})  define the constant
=—-TIn Z{x}), that is the free energy for a given configu-

ration of{x;}. We find D=HJ+KL. (211

Using the definitiong2.10 it is useful to note that
TN w+T/2 L
Her({Xi})= mzN HmMN—wN+—-In———. HI+KL=HJ+KL=D. (2.12

(2.9

B. Statics at heat-bath temperatureT
This may also be written in terms of the internal energy

U({x}) and of the entropguy{x;}) of the equilibrium pro- The partition function of the whole system at equilibrium

cessedi.e., the sping is
Hen(1xi}) = U({xi}) = T Segl 1)), (2.6 Z(M)= f DXDSexri—ﬂM{xi}.{&})]a(Zi x?—N)
TN =f dm;dm exp[—,BNPm —Hm,—w
U({x})= m2N HmN—wWN+ —- 2.7 , dm, M )
T (w+T/2) T 5
N N w+T/2 +toInl—= —§[1+ In(my,—m?)]] .
eP({X} E_E T (2.8
(2.13

The functionU is actually the Hamiltonian averaged over the The new object that appears in the exponent is the configu-

spins andS,, is the entropy of the spins. rational entropy
In [3], we studied the model characterized by a constraint N

on the phase space, introduced for the fragile glass case to _ s 2

avoid the existence of the single-global minimum, and =5 [1+ In(m—my)]. (2.14
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It comes from the Jacobian eff of the transformation of time scales in models with no interactions between particles
variablesDx—dm; dm, [see Eq.(2.3)]. We may compute such us ours. A sequential updating would not produce any
the largeN limit of this partition function using, once again, glassy effect. This dynamics may induce glassy behavior in
the saddle-point approximation. The saddle-point equationsituations where ordinary Glauber dynamj&8] would not.

are found minimizing the expression between square brackn our paper, the parallel dynamics mimics the presence of

ets in Eq.(2.13 with respect tam; andm,. This yields

— T
mzzmi“r,_,_—_
K(mg,my)

(2.19

interactions between atoms in realistic glasses, where a large
internal cooperativeness is present. For different examples of
dynamics implying nontrivial collective behavior, the reader

-, (2.19  may look, for instance, at the spin facilitated kinetic Ising

model[20,2]] or at the kinetic lattice-gas modg22,23.

In a Monte Carlo step, the quantiti€s;x;=Nm,; and
> x?=Nm, are updated. We denote their changeyhyand
y,, respectively. Their distribution function is, for given val-
ues ofm; andms,,

The form of the solutionsny(T), my(T) is quite compli- Ao ri287
cated because each of these equations is actually a fourth- rie i /
N y (Y1,Y2|m1,m2)5f1_i[ —_ 5( 2 X _in_)ﬁ)

order equation, but theygan be explicitly computed. In term
of the equilibrium valuesn,, we find the following expres-

sion for the equilibrium free energy:

_ _ K_ _ .
FIT,my(T),my(T)]= N[Emz_ Hmy —w(my,my)

+T | w(my,m,)+T/2
2"

V27A?
PIRSED) X?—yz>

X6

1
4mwA?my—m2

yi (y2—A%=2y;m,)?
xXexp — ——— > .
207 8AY(m,—m?)

—[1+|n(az—a§>]” (2.17) 2.19

=U(T,my,my) — TSef T,my ,m,)

Neglecting the variations afh, andm, of order A%/N, we
may express the energy difference[@$

—TZ(T,my,m,). (2.18 K

This is the statics both for the model with the constraint

X= EYz—HYy (2.20

(2.9), as long as the temperature exceeds the Kauzmann tenk terms of x andy=y;, the distribution function may be

perature, and for the one without it. Indeed, for the fragilefomaly written as the product of two Gaussian distributions
glass case aT<T,, when the constraint is reached, the

saddle-point Eq.(2.16 becomesm,—m2=m,, no matter p(y1,Y2lmy,my)dy, dy,

what the temperature is of the thermal bath. In this paper,
however, we will limit ourselves, for the fragile glass, to

cases wherd is larger thanT,.

C. Dynamics

The dynamics we apply to the system is a parallel Monte dy [)/—V(X)]2
Carlo dynamics, first introduced ii6]. The thus obtained A B - '

=dx p(x|my,my)dy p(y[x,m;,m,)

dx p( (x—;)z)
27A, 2A4

dynamical model composed by the simple local Hamiltonian

(2.1) and such a dynamics has the benefit of being analytiwhere

cally solvable. .
In a Monte Carlo step, a random updating of the variables x=A%K/2, A,=AK?(m,—m?)+A%K2(m;—H/K)?,

is performed k—x/ =x;+r;/\N) where the{r;} have a (2.22

Gaussian distribution with zero mean and variadde We _

define x=H({x/}) —H({x;}) as the energy difference be- — m; —H/K X—X

tween the new and the old state.Xf0, the move is ac- y(x)= m,—mé+(m,—H/K)2 K

cepted with a probabilityV(8x)= exp(—BX); else it is al-

ways accepted W(Bx)=1]. The updating is made in Az(mz—mi)

parallel. It is the parallel nature of the updating that allows A= 5 == (2.23
the collective behavior leading to exponentially divergent my—mi+(my—H/K)
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1. Dynamics of the fragile glass model represents the distance from the instantaneous equilibrium

To represent a fragile glass, the dynamics that we apply tétate. By instantaneous equilibrium state, we mean khat
the system is a generalization of the analytic treatment oAndK depend on the values af; andm, at a given timet.
Monte Carlo dynamics introduced [d6]. As noted in[15], Fort—o, at the true equilibrium, one has;=0.
also in this generalized case, the dynamical model with a The second dynamical variable is defined as the distance
contrived dynamics may be analytically solved. As we sawfrom the constraint2.9)
in [3], in the long-time domain, the dynamics looks quite
reasonable with regard to what one might expect of any wp=My—mi—my. (2.27
glassy system and the system exhibits a VFTH relaxation.

We repeat here the main steps of the implementation of thi§vhen u,=0, the constraint is reached. This will happen if
dynamics(for a more extended presentation $88. the temperature is low enougi €Ty) and the time large

We let A2, the variance of the random updatifig}, de-  enoughT, is the highest temperature at which the constraint
pend on the distance from the constraint, i.e., on the wholés asymptotically {—<°) reached by the system. Abovg,

{x;} configuration before the Monte Carlo update ordinary equilibrium will be achieved without reaching the
constraint. The temperature is, then, too high for the system

Y to notice that there is a constraint at all on the configurations
A2(t)=8[m,(t)— m'f(t)] 5 ) , (we are speaking about the asymptotic time regjraad this
my(t) —m3(t) —mg implies [see Eq.(2.16)]
(2.29
i — T
where B, m,, and y are constants. In particulay is an t“m,U«z(t):Mz(T): T —my=>0, (2.28

exponent larger than zero that appears in the VFTH-like re-
laxation law of the model, whef decreases towards some
critical temperatureT,, (in [3], we showed thafl, is the
Kauzmann temperature of the model

where

Ko(T)=limK[my(t),my(t); T1=K[my(T),my(T)].

t—oo

Toq™ exp( A )y. (2.29 .29

Below T,, the system goes to configurations that become
arbitrarily close to the constraint, and then stay there arbi-
lf?arily long. Note that, by definition of 5, we may write

A is a constant depending on the system’s parameters.
other modeld16-18,25,26 the varianceA? was kept con-
stant. We will keep it constant in the dynamics of our strong T
glass model as wellsee next section Mo== o
For what concerns the VFTH exponeptwe saw in[3] K.(To)
that it generates different dynamic regimes jor1, y=1,
and 0< y<1; the situationy=1 remains model dependent Solving the equations of motions, for fixed parametaging
even in the long-time limit. We will stay in the following in S€tup, we find, to the leading orders of approximation for

(2.30

the regime fory>1. large times, the following behavior fqi, [3]
The nearer the system goes to the constréiet, the
smaller the value ofnz—mf—mo), the larger the variance B

()= (2.3

A2, implying almost always a refusal of the proposed updat-
ing. In this way, in the neighborhood of the constraint, the
dynamics is very slow and goes on through very seldom bufvherec= 1/2 since, in this paper, we only look at the regime
very large moves, which may be interpreted as activated prafor T=T,,. The constant, depends on the parameters of the
cesses. When the constraint is reached, the variafidee-  model and on the temperature; it is of order one. The solution

comes infinite and the system dynamics gets stuck. The sy$2.31) is valid in the aging regime, wherg<t< Teg(T)-
tem does not evolve anymore towards equilibrium but it is|ndeed, whent~ 7e(T) ~ exA/(T—Ty)]” the “distance”

blocked in one single ergodic component of the configuratior), , becomes
space. At large enough temperatures, the combination

{In(t/tg) + c In[In(t/tg) [}

m,(t) — mi(t) —mg will remain strictly positive. The highest B
temperatureT, at which it can vanish for— o, is identified Mo= a1y < T Tos (2.32
with the Kauzmann temperatuf8]. [( f ) }

The dynamics may be expressed in terms of two combi- T-To

nations ofm; andm,. The first one, defined as )
as it should be.
- We also introduce another variable that will be useful later
_H on, namely, the difference betwe@n(t) and its asymptotic,
M1= = —My, (226) A —
K equilibrium, valueu,(T)
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B A% 1 T

Spa(t)=pa(t) — po(T)=

{log(t/ty) +cIn[log(t/tg) |} 2t K (T)
N
LI [ N (2.33 (2.37)
Ko(T)  Ku(To) _
o where u,(T) comes from Eq(2.16 and
where, using Eq(2.30, u,(T) comes from Eq(2.28), valid,
in the fragile case, wheii=T,. Whent—~, Su,=0, by KD T J%K?

Ko.(T)=limK(my(t),my(t); T)

definition.

The dynamical behavior oft; depends not only on the

temperaturgéabove or belowl 5) but also ony being greater,

equal to, or less than one. With respect to the relative weight

of w4 andu,, we may identify different regimgs8]. What is
of our interest here is the regime ©&T, and y>1, where

= + —
D+J% 2 (D+J?)?

t—oo

T2 J5%k3(J?-3D)

+ +0(T3),
8 D(D+J?)° (™

(2.39

for t—oo, Su,(t)—0.

m1(t)<<uo(t) and a unique effective thermodynamic param-

. : : ; At low temperature, the relaxation time for the slow pro-
eter may be properly defined in various independent ways

sses follows an Arrhenius law

[3].
. As
2. Dynamics of the strong glass model Ted T)* exy{ ?>, (2.39
We now analyze the simple case without constraint on the
configuration space and with a consta, the variance of ~ with
the randomly chosen updatifig} of the slow variable$x;}. B
This dynamical model may also be seen as the limitnfigr _ A%K,(0) (2.40

—0 andy—1 of the preceding one. We also mention that s 8
the case withJ=L=0 is the model of harmonic oscillators
studied in[17,25.

In the fragile glass case, we studied a different version of
such a dynamics for two particular combinations of the vari- Before going on, we recall here that we are able to intro-
ablesm; andm,. Here, we will keep the same notation. The duce effective parameters in order to rephrase the dynamics
first variable is thus defined, starting from the saddle-poin©f the system out of equilibrium into a thermodynamic de-
Eq. (2.15, as the deviation from the instantaneous equilib-scription(for a review, se¢25]).

rium state and is formally equivalent to E@.26). In [3], we got through different methods the following
The second variable is defined as expression for the effective temperature in the regimeTfor

>T, as a function of the interaction parameters of the model
and of the time evolution of its observables

D. Two temperature thermodynamics

(2.39

WhenT=0 from Eq.(2.16 we know thatu,=0. Indeed, at
T=0, the system reaches its minimum

_ 2
M=M= my.

Te(t) =KImy(t),mp(t) Mo+ pa(t)]. (2.41)

Since we will use one of these methods in the next section to
map the inherent structur@S) dynamics into an effective
thermodynamic parameter, we shortly recall this particular
derivation of Eq(2.41). Knowing the solution of the dynam-
For simplicity, we limit ourselves to a choice of the interac- ics at a given time, a quasistatic approach may be followed
tion parameters such th@=HJ+KL>0 andK>0, for by computing the partition functioZ, of all the macroscopi-
which this is the global minimum. In the Appendix we derive cally equivalent states at the tiein order to generalize the
the equations of motion fqu; andu, and we solve them for €quilibrium thermodynamics, we assume an effective tem-
temperature equal to and slightly above zero and long timegerature T, and an effective fieldH,, and substitute

in the aging regime. In this time regimg, turns out to be the  Boltzmann-Gibbs  equilibrium  measure by

much smaller thap,: ;% u2. The solution foru, is, atthe  €XH—He({Xi}, T,He)/Te], WhereHeg is given in Eq.(2.6)
leading order and the true external fieltH has been substituted by the

effective fieldH.. As we get the expression of the “thermo-
A2 1 dynamic” potentialF .= —T.log Z, as a function of macro-

H+J
X = Vi. (2.39

Mo(t)= B o (2.36  scopic variablesn; , and effective parameters, we may de-
In E termineT, andH . minimizing F with respect tan; andm,
J and evaluating the resulting analytic expressionsmat,
=my t).
The differencedu,(t), betweenu,(t) and its asymptotic The partition function of the macroscopically equivalent
value, is now states is
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1 basic long-time properties of a glajs3].
Ze(mlva;TevHe)EJ Dx exr{ - T_Heff({xi}aTvHe)} In a real glass, the presence of distinct procegaetng
€ on different time scalgsmay be obtained from a careful
) analysis of the relaxation response function ab®ye We
Nm,— Z Xi) 5( Nm,— Z Xi ) - limit ourselves to a two-time-scale approach. This means that
the deep and wide local minima at and beldy are geo-
(242 metrically organized to create a two-scale-length potential-

. . . . . energy pattern. As a consequence, the system shoavel 8

From this we build the effective thermodynamic potential as
X . rocesses. The processes represent th from on

a function of T, and H,, besides ofT and H, where the P b eprese © escape from one

Hocti i a d i th h the fi E:Ie_ep minimum Wi_thin a large sca_le valley to another valley.
etiective parameters depend on time throug € UMeyhis escape requires a lengthy directed sequence of elemen-
dependent values of, andm,, SOIUUOUSC of the dynam'CS: tary transitions producing a very large activation energy.
Te andH, are actually a way O.f .de.scnblng the evolution in Moreover, the high-lying minima between any two valleys,
time of the S.ySte.m QUt of gqU|I|br|um. The free-eneigy among which the system is making a transition, are many
= —TclogZ, is minimized with respect ton; andm,. Then

their time-d d | _ 4. vieldi and degenerate. This implies a large activation entropy for
eir ime-depenaent values are inserted, yielding the interbasintransition. 8 processes are instead related to

X6

_ _ elementary relaxations between neighboring miniin&a-
Fe(t) = ULma(t), ma(t)] = TS my(t), my(t)] basindynamicd,
—To()Z[my(t),my(t)]+[H—H(t) INmy(t), Note that in our models, we put together all kinds@f

processes in our short time scale, since they are in any case

(243 much shorter than the observation time considered.
with
5 A. Decomposition of the partition function: Introduction
To(t) =K[mq(t),my(t) ][ Mg+ mo(t)], of inherent structures
- In this point of view, an approximate approach to the
He(t) =H—K[my(t),my(t)Ju4(t). (2.44  problem is to divide the complicated multidimensional land-

. . scape of thépotentia) energy in structures formed by large
U is the internal energy of the whole syst¢see Eq(2.7)],  geep basins and to describe the dynamics of the processes
Sep is the entropy of the fast or equilibrium processtee taking place as intrabasin and interbaghs.

spherical spins[see Eq(2.8)] while T is the entropy of the More precisely, one can define an inherent structi®g

slow, “configurational,” processeghe harmonic oscillatojs 55 that basin behind an actual configuration of the system
[see Eq.(2.14]. The last term ofF, replaces the-HNM,  gy0lving in time at some temperatufethat is the minimum
occurring inU by —HeNmy. U, Sgp, and 7 are “state”  of the potential energy reached in an instantaneous quench-
fun_ct|ons, in the sense 'ghat they depend on the state d(?ﬁg by the method ofteepest descent

scribed byT, T, H, and, if neededt.. In the case where  “The introduction of IS’s allows, at low enough tempera-
only one relevant effective parame@&s remains, these func- e (T <T,), a decomposition of the partition function into
tions do not depend on the path along which its value hagp |s part, connected to the zero-temperature landscape cor-
been reached. responding to the configurations of the system at temperature

As we saw in[3] for the VFTH relaxing model al T and a part connected to the thermal excitation of the con-
>To and in the Appendix for the Arrhenius relaxing casefigyrations in a single minimum.

[see Eqs(A25) and(A35)], the effective temperature alone ~The probability that an equilibrium configuration &t
is enough for a complete thermodynamic description of the- 1/3 pelongs to a basin associated with an IS structure with

dominant physical phenomentl {=H). The introduction of 5, energy density in the interve,e+de] is [4,13,8,9
H. becomes important only for second-order corrections in

Sy P(e, T)dex exp{— BN[e—Ts(e)+f,(e,T)]}de,

IIl. INHERENT STRUCTURE APPROACH . . .
wheres,(e) is proportional to the logarithm of the number of

The characteristics of a glassy system may be representd@'’s existing at the energy leved and f,(e,T) is the free
by means of a multidimensional potential-energy functionenergy of the configurations inside an IS at enezgselated
with a complex topography. The spatial patterns of atoms ifo a temperatur& system. To derive the distribution3.1) in
crystals and in amorphous systems, at low temperature, rephis form the approximation is made thit is computed as
resent minima in the potential-energy function describing théhe average over all the IS’s of energyThis means that, by
interactiong4,5]. assumption, the shape of a basin depends only on its energy

In the case of the modéR.1), all the complex chemical level and on the temperature. Enough beldoythe further
properties of real glass formers do not occur, neverthelesgpproximation may be made, thii(e,T)~f,(T), because
the system exhibits several aspects of their complex featurefiuctuations inside one IS are smgl2,13. The shape of the
indicating that our simple model is complicated enough forbasin depends, then, only on the temperature. All the internal
what concerns the description and the comprehension of th@ibrationa) states of any IS have the santebrationa)
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free-energyf, at givenT. We anticipate, however, that in the
present study, we will not carry out such an approximation
for our models.

IS dynamics are significant, i.e., they significantly repre-Inserting this value fo; and solving the spherical condition
sent the actual dynamics of the system at fiffiteorovided =N ,(S™")2=N for X, we find
that there is a one-to-one correspondence between IS’s and

(min):JXi +L

Vi. (3.3

real minima of the thermodynamic potential at finite tem- Wi

perature and provided that these IS’s are visited with the A= 2 3.4

same frequency with which the corresponding finite

minima are visited. wherem; andm, are defined in Eq(2.3) and
Wi=J?m,+2JLm; + L2, (3.5

B. How it is carried out in mean-field spherical p-spin model

For what concerns disordered spin systems, in order t@Jsing Eqs(3.4), the minimum{S;} configuration for a given
find the stable solutions, the TAR4] approach may be used. set of{x;} is, thus, given by
Following this approach, for fixed quenched disorder, the
spin fluctuations are averaged out, leaving self-consistent (miny_ 9% TL
equations for the averages of the spins, i.e., the local magne- ST
tizations. These equations may be derived by a variation of a
mean-field free-energy functional of the local magnetiza+Finally, the expressiof3.2) becomes
tions. The solutions of TAP equatiof3AP states or pure
state$ are, therefore, minima of the free-energy landscape,
once that the fluctuations have been eliminated performing
an average. Every TAP state is characterized by a set of local
magnetizationsn;, wherei=1,... N andN is the size of that is the energy function of the inherent structures. Conse-
the system. The inherent structures, then, follows from TARyjuently, the partition sum over inherent structures is defined
construction in the limit of the temperature going to zero. by

Vi. (3.6

is

K
HisE Nl

2 my—Hm; —w;g

(3.7

C. Inherent structure approach in the harmonic-oscillator
spherical spin model

Zis= f Dxexd — BHis]= f dm; dmy, expZ— BHis)-

As we will see, the modgR.1) is built in such a way that 3.8

every{x;} configuration is an inherent structure. Indeed, at ap ;e to the minimization, any explicit dependenceToin the
given{x;} configuration at finiteT, the{S;} are fast variables gffactive Hamiltonian disappeaifgompare Eqs(2.5 and
and they contribute to the energy and to the other observ(-3.7)]_ In Eq. (2.2), we integrated over the spins, instead of
ables as a noise depending on temperature. If we take awgyinimizing with respect to them, and therefore we also had
this contribution, we do not actually change the configura—, entropic ternT'S,, for the fast processes, with,, given
tions of the minima of the slow variables. In the case of thgp, Eq. (2.8 and a sl?ghtly different internal energ[yfxlw in-
system without constraint on the configuration space, Nogie4q ofNwi, with w given in Eq.(2.4) andwi in Eq. (3.5)].
contrived dynamicssee Sec. Il C2 any{x;} configuration - the inherent structure approach, instead, carrying out the
is an inherent structure. For what concerns the constrame&eepest descent makes the entropic term vafusly the
model, instead, certain configurations are not allow®ec.  inimal configuration is taken into accourand the effec-

Il C 1). Moreover, the presence of the constra2ld) pro-  tiye Hamiltonian, given in Eq(3.7), has no explicit depen-
duces(entropig barriers higher than in the other case t0 gelyence on the temperature. All by all, we notice a close anal-
from a certain IS to a different one. That just means that th%gy with the inherent structures in the spherigabpin
dynamics through the inherent structures is even slower iyqqel- in both cases, one may sum out fast processes at

the fragile glass case than in the strong glass case. finite T, and then send the temperature to zero to get the
First of all, we have to define the steepest descent procgqnerent structures.

dure for the model. We start performing the minimization of 1o configurational entropy for IS’s comes from the Jaco-

N bian of the transformation of variabl@x=e’dm, dm, [see
H+>\E AN, (3.2 Egs.(2.3) and(2.14)]. It is the same of the finit& case, since
=1 any allowed configuratiofx;} is also an IS.

The static average dff;s is given by
whereH is the Hamiltonian(2.1) of the model and where we , o
implemented the spherical constraibiS?=N by using the EsdT)=Hi[ m{I(T)], (3.9
Lagrange multipliei\. .
To get rid of the contribution of the spins, i.e., to get rid of where m(l'fZ)(T) are the solutions of the saddle-point equa-
the fast modes, we minimize E@3.2) with respect to the tions that we get in the IS case to compute E18), in the
{S;}. We get limit of large N. The equations are
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o D L ﬁis tions that each sample is visiting are found. The enéigy
m(l'S)Z—Z— T==, (3.10  averaged over the ensemble of different trajectories is
JK=3lw) I K
. K
e T T ES(t)=(His) =N my(t) ~ NHm (1)
my¥ - (miP)?=g M+ L=, (319
is —NJ?my,(t) +2ILmy(t)+L2 (3.16
where we define K \/
=N—my®—NHmM{® - N I2mi®+ 23 m{®) + L2
B JL B J2 2 2 1 2 1
His=H+ - Kig=K=- (3.12 -
is is + NK;g( m(l's) ,mgs)) Ouo(t)
with w, from Eq. (3.5. The combinatiorH;J+ KL =HJ +C(m{®, mli®) su,(1)?, (3.17)

+KL=D is, again, simple, as in E¢2.12). o
In the case at finitd, the static partition function2.13  where Su,(t) = u,(t) — uo(T) is given by Eq.(2.37) in the
was Arrhenius case and by E@.33 in the constrained case for
T=T,. The last three terms are

Z:f dmy dm, exp(Z= BHer), (3.13 (is) K—is) —is) 2(s) —is), | 2
EG(T)=NZmf—~ NHm{ — NIZmS + 2J LS + L2,

with He defined in Eq.2.5) andZ in Eq. (2.14. The two (3.18

saddle-point equations are different from E¢8.15 and o (i9) ) )

(2.16 valid in the realistic case, giving thus different results: The efqurllllbrlum IS energ)Eeg (T) ng be a different fun(;- A

is) . .. ~(is) tion of the temperature in the two dynamic versions of the

mi 3 #my ». We note explicitly tham;™ depends o even

inlfﬁe ISlyéase pIctly 12 C€p model. The second-order expansion will be needed only for
Comparing the expressions so far obtained with those ap}he_gst)rolgs)gl.ag case and the expression for the factor

pearing in the exponent of the probability distributitsh1) ~ C(m1y~,m3~) is, in that case

we identify the configurational entropMs; with Z, as de-

fined in Eq.(2.14), and the rest with

N(e+f,)=Hex({Xi}) =His({Xi}) T F,({x}), (3.14

DJ*K?

(g gy = 2
(ma™,m") 8(D+J2)4

(3.19

We may then take a system in equilibrium at a temperature
where, as already told{;({x;}) is the IS internal energy and T, such that the configurations visited by the system at
from the difference Hen({xi}) — His({xi}) =F,({x))} the  equilibrium are the same as those out of equilibrium at tem-
thermal free energy of one IS turns out to be peratureT. This we call effective temperature. To be more

precise, fixindg, T, is defined as the temperature at which the
(3.15 system at equilibrium would visit the same configurations
' visited by the system out of equilibrium at temperatiie
with the same frequency.

T
FU=§In

w+T/2
T

- N(W_Wis),

wherew is defined in(2.4) and w;s in (3.5). Notice that it
explicitly depends on the parameters and m, of the IS, 2. The effective temperature employed in numerical approaches:

whereas in literature it is often assumed to be a constant The fragile case
(harmonic approximatiof4,5,12,13,8,9. Following the approach found in literatuf@2,13,9 for
numerical simulations, we may define T through the
D. Effective temperature in the IS’s approach matching of the equilibrium and the out-of-equilibrium 1S

1. Expansion of the dynamical energy internal energy: it is the one such that

A possible way of defining an effective temperature, EQITEM1=EP1). (3.20
sometimes used in literature, for instance in the study of
Lennard-Jones interacting sphef#&g,13 and in the study of ~For our paper, it is possible to work out an analytic expres-
the random orthogonal modé§8], is to compare the time sion for such ér(e'f)(t), at least near the Kauzmann transition
dependent out of equilibrium mean internal energy with thefor the fragile glass case, linearizing T T,
equilibrium mean internal energy expression at a temperature What we get is a parameter different from the thermody-
T#T. The out of equilibrium mean internal energy is built namic effective temperatur€.41) that we got from three
taking the dynamics of a system out of equilibrium at tem-different approachesincluding the Fluctuation-Dissipation
peraturel and repeating it many times starting from different Ratio) in [3].
initial conditions. A statistical ensemble of trajectories is For the fragile glass case, we are not able to derive any
constructed in this way. At any given tinmgthe configura- simple expression, of the IS ener¢$.16), but we may in
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46 T T T 3. The effective temperature employed in numerical approaches:
T=T=4.00248 The strong case
‘-. K=l=1 4.075 |
451 H=L=01 For the strong glass case, it is possible to work out a
| 407 simple analytic expression for the dynamical and the equilib-
a4} 4.065 rium IS energy. To do it, we will expand near zero tempera-
: 406 ture up to second order in.
We underline that the thermodynamic effective tempera-

ture given in Eq(2.4)) is also the expression of the effective
temperature for the system without constraint. What changes
in that case is the time behavior o, — mfz Mo, that is now
given by Eq.(2.36, and its limit at equilibrium[see Eg.
(2.16]. In this case, where the analytic treatment is, by far,
easier, we can give a short explicit expression'lf@j’)(t):

t

100 10° 100 100 10 0¥ 100 1% 10° 10'% _ J4K2
. TH=T+ Sup(t)+ —————=TSu(t) +O(T?
FIG. 1. Effective temperatures vs t at the heat bath temperature ~ ©* D+J? w2(t) 2(D+J%)3 p2(H)+0(T5
T=4.002 48, equal to the Kauzmann temperature. The constants in
the Hamiltonian(2.1) are set to the following value$=J=1, H +O(5/.L2(t)3). (3.21)

=L=0.1. The constraint constantrig,=5. The upper curve shows
the effective temperature got by matching out of equilibrium andHere, terms of O(T?) and O(8u,(t)?) cancel. This
equilibrium IS internal energy. The one in the middle is the behav-Tgf)(t,T) is obtained from Eq(3.20 with
ior of Eq.(2.41), for systems at finit&, and the lowest one is the IS

effective temperaturé3.29. Eijs(t) (H+J)2 T J4K

tr—————T?
N 2K 2 8D(D+J?%)?2

any case solve it exactly. The results are shown in Figs. 1 and
2 for a given choice of the values of the interaction param- KD J*K?2
eters and of the VFTH exponent of the model. As one can T Opa(t) + —————=Tu(t)
) : : 2(D+J?) 8D(D+J?)

see, Ty’ (t) turns out to be different frong(t) at any time
decade. DJ4K?3

As a matter of fact, what we are comparing now with the
averageE(t) is a functionE.((TL) of the effective tem-
perature alone, while we know that out of equilibrium, any +O(T ()2 + O(Su(1)3). (3.22
proper thermodynamic function cannot simply depend on
just one temperature as the thermodynamic functions of If we expand(2.4]) in the same way, we get
equilibrium systems d¢25]. It is not surprising, thus, that

+ m So(1)2+0O(T3) +O(T?5u,(1))

the two functions do not coincide KD T JK \?
' Te=TH+Kouo(t) =T+ ——= dus(t) +5| —— | Sualt)
D +J2 2 J?
DI Sup(1)?+O(T3) +O[ T?6u,(1)]
2(D+32)* H2
+O[Tua(t)2]+O[ Sua(t)?]. (3.23

As we see from the formulas above, and from Figs. 3 and
4, for a given choice of the parameter values, in the case with
Arrhenius relaxatior, and T$Y are very similar. Their dif-
ference is one order of magnitude less than in the model with
contrived dynamics.

4. A more fundamental definition of the IS effective temperature

Here, we propose an alternative way to identify an effec-
tive temperature that maps the dynamics between inherent
structures into a thermodynamic quantity. We follow a qua-
sistatic approach using a partition sum, just as we did in the

FIG. 2. The same effective temperatures, for the same choice dinite T case. The aim is to be able to define an effective
parameters as before are plotted for a different heat bath temperthermodynamic parameter for the IS dynamics and to com-
ture: T=4.1. pare it with theT, given in Eq.(2.41). Following exactly the

4 1 ! ! 1 1 t
10° 10° 105 102 10% 10
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0.01 — . . . . . .
. K ) —
T=0.0005 000224 K = exp{ ~BEN Emz_Hgf)”H_Wis
H=L=0.I 000222
0.008 |\ J=K=1 0.0022 @
0.00218 Teo )
0.00216 — In(mz—ml)H (3.2
0.00214
0.006. - 0.00212 i i
0.0021 = exp{ — Bes [ His(My,my; T, He>
OIG008 S} Pl = Bez [ His(My, M, e2’)
0.004 - 10000 15000 20000 - _ng)z(ml,mz)]}_ (3.26
B =1/ andHUS are parameters describing the behav-
CoO ior of the system going only through 1S’s. Minimizing the
free energyF(¥=—TSIn 21 with respect tan, , we get
iy
- - : : : : : L

is) _ % 2
10 10* 10° 108 10° 102 10 TSS) =Kis(mg,my)[my,—mi], (3.27

FIG. 3. Time evolution of the effective temperatures at the heat
bath temperatur&=0.0005 in the model with Arrhenius relaxation.

The constants in the Hamiltoniaf2.1) are set to the following Bv i ting the i d dent val d
values:K=J=1, H=L=0.1. The lower curve shows the effective y inserting the time-dependent values rof and m, we

temperaturd3.21) got by matching out of equilibrium and equilib- NOW look at the.t|me (.avoluuon.of the _effectlve temperature
rium IS internal energy. To ordefu, it coincides analytically with ~ (3-27) for large times, in the aging regime, and we compare
the IS effective temperatur8.34. Second-order differences are too It With the behavior of the thermodynamic effective tempera-

small to appear in the plot. The upper curve is the behavior of Eqture (2.41). _ . _
(2.41), for systems at finiteT. For the dynamically constrained model, for-o, T(S)

—T (if T>Ty). Whenty<t<w, however, the way the ef-
same approach we used[i8] (see Sec. Il I, including the fgctlve temperature app_roaches the heat—bqth temperature is
substitution of the real external fiekd with the effective one ~ different from the behaviog2.41) of Te, found in the case at
HSS), we compute the partition function counting all the finite temperature. For a comparison, their first-order expan-

HE =H—-Kig(my,my) ;. (3.28

macroscopically equivalent IS’s, through which the system i$10nS are
evolving in this symbolic dynamics, at a given tirhe Koo (T)Q(92
TE=T+| 1+ T | Ki.(T) (1),
. . ' e2 ( 2D(1+QgS)D) is, ( ) /1'2( )
Z9m,,my) = [ Dxexit - B M T )] 229
Ku(T)Q.0% | -
_ , _ 2 = T S
X 8| Nmy 2. x|>5<Nm2 Z xl) (3.24 Te=T+ 1+T2D(1+QxD) K..(T)dus(t), (3.30
with
0.01 T T T
0.003 . ~ o
e 000295 [ Kis,oo(T):t“rTcKis[ml(t)ymz(t);T]a (3.31
0.008 J=K=1 0.0029 -
0.00285 Ko(T)=lim R[ml(t),mz(t);T],
0.006 F 0.0028 t—oo
0.00275
0.0027 : = : NG
0.004 | 1000 1500 2000- Qg's): lim =3 3 (3.32
t—o NisWis
0.002 E JZD
’ »=IMQ=Ilm —0———. (3.33
T Q MQ e K3W(WHT/2)2
0 : . : : : t
10° 10° 10 10° 10° 107 The time-dependent variabléu,(t) [introduced in Eq.

FIG. 4. The same effective temperatures, for the same choice d@-33] is the same in both casespart from the parametey
parameters as before are plotted for a different heat bath temperé2fluencing only the short timgswhile the coefficients in
ture: T=0.001. Comparing the time scales of the two plots, we carfront of it are different at any temperature, includifg. In
clearly observe the decreasing of the Arrhenius relaxation time téhe fragile case, thus, this second IS effective temperature
equilibrium 7., that takes places raising the temperature. does not coincide Witﬁl'gf) and it is much nearer, at any

066125-10



INHERENT STRUCTURES IN MODELS FOR FRAGE. .. PHYSICAL REVIEW E 64 066125

time, to Eq.(3.30. However, even if thisT(S) is conceptu- ~ given by Eq.(2.1). One leading to the description of a fragile
ally more properly chosen than the one defined matching oudlass having a nonzero Kauzmann temperature and the other
of equilibrium energy at temperatufieand equilibrium en- ~ one representing a strong glass.

ergy at temperatur@{? , we still do not get the same pa-  Using a particular Monte Carlo dynamics and developing
rameter describing the finifé dynamics in a thermodynamic it analytically, thus having the opportunity of probing it in
frame. The inherent structure approach gives thus a googhore detail with respect to a numerical study, we found
approximation but is nevertheless never analytically correcequations of motion that are in all respect those typical of
in the description of the real temperature dynamics. To showlass relaxation.

how good this approximation is, we may take as an instance In the strong glass case, we apply exactly the same paral-
a certain realization of the model with given values of thelel Monte Carlo dynamics used if16—-18,23, finding an
“fields” and “coupling constants.” We plot in Figs. 1 and 2 Arrhenius relation between the relaxation time of the slow
the behavior off(9)(t), T{(t), andT4(t) at heat-bath tem- processegx;} and the temperature.

peratures equal to and just above the Kauzmann temperature. In the fragile glass case, the model is provided with a

For the strong glass case, we also expand for temperaturegnstraint applied to the harmonic-oscillator dynamics, i.e.,
near to zero and for long time and we get to the slow processes dynamics, in order to reproduce the
behavior of a good fragile glass former.[I8], by means of a

. ~ KD Monte Carlo constrained dynamics, we identified the Kauz-
T =T+Kisdua(t) =T+ 5 Oma(t) mann temperature with the ofig at which the constraint is
D+J reached, for the first time in a cooling experiment from high
T J%K2 DJ4K3 temperature. There we showed how the thermodynamic
+o—————u(t)+ ————— Suy(1)? phase transitiof27], that takes place due to the breaking of
2 (D+J%)3 2(D+J%)* the ergodicity in the landscape of our model, is character-
3 2 2 ized.
+O(T) + O[T 0u2(1) ]+ O[T ou2(1)°] In this paper, we carried out the inherent structure ap-
+0[Sua(1)?] (3.34  proach. In both dynamical models, decreasing the tempera-
ture, the free-energy local minima do not split into smaller
DJ2K2 local minima, just like in the-spin model in zero magnetic
=To(t)— —————=TSuo(t) + O Suy(1)°] field [11], because every allowed configuration of harmonic
2(D+J3?)3 oscillators is and remains an inherent structure at any tem-

perature. Consequently, we may set a one-to-one correspon-
dence between the minima of the free energy and the ones of
43 the potential energgi.e., the inherent structureBecause of
. DJ*K ; ; ;
=T(t)+ Suo(t)2+0(T3) this exact correspondencg, the dynamlcs through inherent
o 2(D+J?)% structures should be a valid symbolic dynamics for the real
system, i.e., at a finite heat-bath temperafliré\t least, it
+O[T?8u5(1)]+ Ol Touo(1)*1+ 0L 8u2()®],  would significantly represent the actual dynamics if the in-
(3.3  herent structures are visited with the same frequency with
which the corresponding free-energy minima at firiitare
where du,(t) is given by Eq.(2.37). visited.

The effective temperaturé, mapping the dynamics of In our paper, the proper way to define IS’s is to minimize
the system evolving at finite-temperatufehave the same the model HamiltoniafEqg. (2.1)] with respect to the spheri-
behavior ofT,, in approaching the heat-bath temperature upcal spins, i.e., the fast relaxing variables. Performing such a
to order Téu,(t) where they start deviating one from the minimization, we get the effective Hamiltonian given by Eq.
other. For a quenching to zero temperature, the two effectivé3.?) instead of the one given by E(.5), where Eq(3.7) is
temperatures coincide. Moreover, due to the simplicity of thgust Eq.(2.5) for T=0: due to the minimization any explicit
model, the IS effective temperatufé];) is equal toT(e'f) dependence oil disappears. The configurational entropy for
given in Eq.(3.21) up to orderdu,(t) in time and up to inherent structures was computed from the logarithm of the
orderT? in temperature. Jacobian of the transformation of variabl®x—dm; dm,,
and thus it was the same of the exact finitepproach. In
our models, then, any configuration of harmonic-oscillators
{x;} (for the fragile glass model, every configuration allowed

In this paper, we consider a model that owns all the basidy the constraint is also an inherent structure. Although the
properties of a glass, built by processes evolving on twanodels we considered are conceptually very simple and
well-separated time scales, representing éh@nd 8 pro-  without interactions, as compared to another approach pro-
cesses taking place in real glassy materfi8ls The decou- posed for systems with interacting discrete spins where the
pling of time scales is fundamental for a generalization oflS scheme breaks dow[28], our setup seems to be more
equilibrium thermodynamics to systems far from equilib- physical since it is intimately based on time scale separation
rium. between fast and slow processes. A direct consequence of

We take into account two different versions of the modelthis time scale separation is that we encounter both a math-

+O(T3)+0[T28u,(t) ]+ O[ Tou,(t)?] (3.35

IV. CONCLUSIONS
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ematically and physically well-defined configurational en- In this notation, the average and the varia(@3 of the

tropy, whereas this observable suffers from principle difficul-Gaussian distributiop(x|m;,m,) [see(2.21)] of the pos-

ties in other approach¢&8]. sible changes in energy during the Monte Carlo dynamics
We may take a system in equilibrium at an effective tem-become

peratureT{®), such that the configurations visited by the sys- _

tem at equilibrium are the same as those out of equilibrium at — A2

temperatureT. First, we defined an effective temperature ~ o

through the matching of the equilibrium and the out-of-

equilibrium internal energy of the inherent structufélse  We remember thak is the difference(2.20 between the

one such thatE(TgS)(t))zEd(t)]. For the strong glass energy of the configuration proposed for the exchange and

model, this effective temperature almost coincides \ilith  the energy of the actual configuratiah.is fixed.

provided that the temperature at which the system is To shorten the following expressions, we also define the

guenched is not too higlas far as terms dD(TSu,(t)) are  parameter:

negligible they are equhlOn the contrary, when the con- o

straint is set and the contrived Monte Carlo dynamics is ap- X / A? (A5)

plied, we found that the thus derived effective temperature a= = 2

T(® is quite different from the effective temperature that we V24, 8uat p1)

were able to identify in the finit& dynamics. Therefore, we g g basic quantities that have to be computed in order to

proposed a definition following a quasistatic approach. INsolve the dynamic equations far, and u, are the accep-
this way, we computed the partition function counting all the;; e rate of the Monte Carlo updating

macroscopically equivalent inherent structures, through

which the system is evolving in this symbolic dynamics, at a

given timet. Even though the result we get is much more A(t)Ef dx W(Bx)p(x|my,m,), (AB)
similar to the finiteT dynamics effective temperatufau-

merica”y Speaking the difference is one order of magnitud%nd the rate of Change of the energy of the System1
smalle), yet it is analytically different, indicating that the

inherent structure scheme for the study of dynamics can only

be an approximation to what happens in the realistic dynam- '1(t)5f dx xW(Bx)p(x|my,m,). (A7)
ics of the system. As a consequence, also the derivation of

out-of-equilibrium thermodynamic quantitiés.g., the con-  Defining the auxiliary function

figurational entropy obtained making use of this approach

could suffer of a systematic deviation from the exact result. _ — B?A, Ay
f(t)Ex,Bexr<—,8x+ 5 )erfc —B—al,
X
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APPENDIX: STRONG GLASS DYNAMICS we can write down the exact expressions Aoand| as

In this Appendix, we present the Monte Carlo dynamics

of the observableg, and u,, functions of the slow relaxing _= L
harmonic-oscillatorgx;} through A 2 erfo(a) + Bx|’ (A10)
1 1 x| N
_- _ _- 2 X px\ f

ml_N EI Xi, My N EI Xi (Al) |1=§ erfc(a)+ 1—E)E—A (All)
in the case where the mod€2.1) is not subjected to any ~ The Monte Carlo equations of motion far, and u, are
constraint on itgx;} configurations. formally the same found for the fragile glass cé3g

Let us recall the definitions, given in Sec. Il C,

o m:—JQf dx XxW(8x) p(x|my,my)
Mlzﬁ_ml! (A2) B
—(1+DQ) J dx y(x)W(BX)p(X|my,my),

=My —mj. (A3) (A12)
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2
M= % dxxW(Bx)p(x|my,m,)

+2p, [ dXYOOW(BO PO M), (AL

From Eq.(2.23, we knowy(x) and we may rewrite it as a
function of the above-defined andx:

_ X
y(X)=4a’u, 1—;). (A14)
X
Using this, we get
. 8a’u(1+DQ)
M= —<JQ— T AR F4(t)
—4a?u (14 DQIA(L), (A15)
. 2 az,uz )
re=Z\ 17 l1(t) +8a’uiA(t).  (A16)

1. Dynamics in the aging regime: Zero temperature

First of all, we solve the equation of motion far, at T
=0, neglecting terms of ordezrcf with respect to those of
order u,. For long timesa>1. We can, then, expanid(t)
for large «, getting

[,(1) e AK (A17)
! 2a\m 4a?
Equation(A16) becomes then
. e o’ A2 (AL8)
Ha™ 2a\/; 402’
otherwise written as
— 2
o (A19)
o= ,
N
or
A2
o 5
wy=—2ud2— T2 (A20)
Mo=—2u5 In

At T=0, the solution in the aging regime, expressegin
=A?/(8a?), turns out to be

AZ
ﬂz(t)zg

1
A21
I2t12 (A21)
: 2

\/; Inln\/;

PHYSICAL REVIEW E 64 066125

Always at zero temperature, the leading order of the expan-
sion of the acceptance rafeis, for a>1,

a2
e
20(\/;.

Combining this with Eq(A17), the Monte Carlo equation of
motion (A15) takes the form

A= (A22)

' JQAZ —2u,(1+DQ)(2a%+1
M= 201\/— el Q)(2a%+1);.

(A23)

Dividing Eq. (A23) by Eq. (A18), we may write down a
differential equation for, as a function ofu,

duq a*

W~16(1+DQ)—M1 JQK, (A24)

where we have neglected terms of ordar?with respect to
those of order one. In the adiabatic approximation, obtained
by neglecting the left-hand side, the solution of E424)
turns out to be

__ Ak, (A25)
M= A2(1+DQ) Mo

At zero temperature and for long times, one thus jpas
~ u5<pa.

2. Dynamics in the aging regime:T>0

If Tis above zero, the leading order of the expansioA of
andl, for large times ¢>1) and small temperature are

2

amt (A26)
2a\/— 4Ta
A
8T a?
e o AZK A%K 27,
Y oaT 402 ( 4Ta2>’
1- ~
A%K
where the term3 «? are of O(1). Indeed, it is
8Ta? 8T A2 p, 1
S s . (A29)
A%K  AZK 8uz  u2 . Suy
M2
[see the definition ofr (A5)], so that
8Ta?
I|m =1, T>0. (A29)
» A%K
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In this notation, Eqs(A26) and(A27) may be rewritten also
as

7a2 1+ —_
M2

e

-~

A

. (A30)
14222
M2

0,
, 14 K2
e " A%K Su, M2

IZ— —_
A

> (A31)

o K2

M2

1+

and the Monte Carlo equations are now

—4a%(1+DQ)u,

: (A32)

T. (A33)
1+ 2£>

The solution to Eq(A33) is, to leading order,

t A2 1
Mz()—8

. A34
o (A34)
In —

Jm
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The behavior ofu; comes out to be

49QK  ou, 2

~_ < — A35
A2(1+DQ) i, (A%

M1

142282
M2

Notice that this vanishes when equilibrium is approached,
since thendu,—0.

For times even longer than the time scale of the aging
regime, the system finally relaxes, exponentially fast, to
equilibrium. The equilibrium value of., is known from the
statics(see Sec. )| as

(A36)

where the explicit expansion df..(T) in temperature is
shown in Eq.(2.39. The asymptotic value of is, from its
definition (A5) and taking the first-order expansionTp

o
a(T)= ——=\/=
8uo(T) T

A%KD
8(D+J?)

(A37)

with

As

(A38)

From the equations of motion studied abdVeok for in-
stance at Eq(A19)], we find for the relaxation time to equi-
librium

2
Te* € .

(A39)

Using Eq.(A37), this is nothing else than the Arrhenius law

As
Teq™ €XP =

=" (A40)
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